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An Anomaly-based Detection System for
Monitoring Kubernetes Infrastructures

Josue Genaro Almaraz-Rivera

Abstract—Network monitoring is crucial to analyze infras-
tructure baselines and alert whenever an abnormal behavior
is observed. However, human effort is limited in time and
scope since many variables must be considered in real-time.
In addition, infrastructures such as Kubernetes are complex
by nature since they do not consider fixed equipment from
which to gather data; instead, these infrastructures consider
distributed, event-driven, and ephemeral containers that make it
complicated to capture and track metrics. Artificial Intelligence
models have demonstrated high detection rates for anomaly
detection; therefore, there is a need to design and implement a
global solution to collect complex data and orchestrate the whole
Machine Learning Operations workflow. This document shares
the findings and learnings from defining a cloud-native Artificial
Intelligence infrastructure at Aligo to develop an anomaly-
based detection system for monitoring on-premise Kubernetes
infrastructures. After Chaos Engineering experiments, it is shown
that the resulting deployed system is strong when alerting outliers
and that an end-to-end infrastructure has been developed for
conducting future Artificial Intelligence projects at the company.

Index Terms—Anomaly Detection, Cloud Native, Deep Learn-
ing, Kubernetes, LATAM-DDoS-IoT Dataset, Machine Learning,
One-Class Classification, Online Learning

I. INTRODUCTION

M achine fault detection is essential to trigger alarms
whenever a device or equipment exhibits abnormal

behavior. This monitoring task is notorious in critical pro-
duction services, where an application must remain available
for the users. Such a level of telemetry is necessary to be
automatic and also based on Artificial Intelligence (AI) since
Machine Learning (ML) and Deep Learning (DL) models have
demonstrated high detection rates for anomaly detection [1].

Kubernetes (K8s) [2] is an open-source technology from the
Cloud Native Computing Foundation (CNCF) [3]. It provides
increased stability and autoscaling options [4], in addition to
a better workloads orchestration of different instances, and it
is going “under the hood” like Linux [5]. At Aligo [3], the
infrastructure and applications management is done using K8s.

As part of a summer project, Aligo wanted to increase the
visibility of its on-premise K8s infrastructure, adding AI to
the operations to reduce the number of manual monitoring
tasks. Measurement of the instances during normal operational
state (i.e., the negative class) was easy to obtain; therefore, as
a solution approach, it was decided to implement One-Class
Classification (OCC) [6] techniques due to their advantages in
dealing with imbalanced data and unknown positive or outlier
classes [7].
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This work is presented as a case study, showing the findings
and learnings from defining an AI infrastructure inside of
Aligo to create and implement an anomaly-based detection
system for monitoring Kubernetes. It shows that AI systems
are not just models since the building blocks include more
tasks, such as infrastructure serving, configuration, and data
preparation [8].

The experimentation part is divided into offline learning and
online learning [9]. The offline learning experiment consisted
of training OCC models using the novel LATAM-DDoS-IoT
dataset [10], [11]; local data from Aligo’s on-premise K8s in-
frastructure was collected for online learning. These couple of
tasks served for a robust classification performance evaluation
of the created solution. Although a more established dataset
could have been used for the online learning experiment, the
data for this final test was aimed to be fully collected in real-
time from Aligo’s infrastructure since it was the monitoring
target.

The LATAM-DDoS-IoT dataset was created in 2022 in
collaboration with Tecnologico de Monterrey and Universidad
de Antioquia and contains 799,187 normal flows from one of
Aligo’s production networks, along with millions of denial of
service (DoS, DDoS) attacks [12] flows based on UDP, TCP,
and HTTP protocols. Due to the data collection procedure and
the advantage of having a labeled dataset to ease the evaluation
of classification models, it was a good choice for initial testing.

Therefore, the main contributions of this work can be
summarized as follows:

• A new detection system based on Artificial Intelligence
models tested on the novel LATAM-DDoS-IoT dataset
and local data to identify outliers on on-premise Kuber-
netes infrastructures.

• A tested cloud-native workflow proposal for conducting
AI-based projects on Kubernetes environments.

The remaining sections of this document are structured as
follows: the related work is presented in section II. The defined
methodology can be read in section III. Section IV shows
the results and discussion of the selected anomaly detection
models and the created training and testing pipelines. Finally,
in section V, the conclusions and future work are presented.

II. RELATED WORK

One-Class Classification is a promising research area for
anomaly detection [13]. This classification type focuses on
modeling the objects of one class to learn a boundary that
separates them from any other object.

OCC has been applied in network-based intrusion detection
[14], in the protection against masquerade attacks [15], as
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well as in the profiling of anomalous behavior in industrial
control systems [16]. Additionally, it is a promising strategy
for detecting zero-day attacks [17].

Recent works regarding the deployment of Machine Learn-
ing on Kubernetes environments [18]–[22], suggest the imple-
mentation of end-to-end systems to alleviate the data scientists
job when getting insights at production-level. Nevertheless,
it seems that a classification-based solution is not available
that provides an extensive benchmark of several AI orches-
trators and data collection tools, nor step-by-step definition,
implementation, and testing of a cloud-native solution for
infrastructure monitoring.

Therefore, this work presents an OCC cloud-native approach
for Kubernetes monitoring, starting with selecting the Artificial
Intelligence and data tools required and ending with deploying
and testing the created solution.

In addition, due to the One-Class Classification approach
followed for anomaly detection, dataset balancing does not
become a critical issue [23]. It is opposed to other works
that perform binary or multi-class classification relying on
potentially biased results toward the majority class due to the
balancing process omitted [24], [25].

The following section provides more details regarding the
proposed methodology for creating the anomaly-based detec-
tion system.

III. METHODOLOGY

This section presents the benchmark of different Artifi-
cial Intelligence orchestrators and data collection tools, the
anomaly detection models selection for One-Class Classifica-
tion, and the explanation of the hyperparameter tuning process
and feature engineering for training and testing.

A. Selection of Artificial Intelligence and Data Tools

Machine Learning workflows are essential when integrating
ML Operations (MLOps) [26] into a technology ecosystem.
That can be explained as these workflows outline the steps to
collect and process data and build, deploy, and manage Ma-
chine Learning and Deep Learning models. Different workflow
configurations exist, but not every project requires the same
steps. See Fig. 1 for the defined workflow for the training
process and Fig. 2 for the one defined for testing. In Fig. 1,
the training dataset is created and preprocessed for then fitting
the anomaly detection models in parallel; Fig. 2 shows the
workflow to detect outliers in real-time, where the Condition
node is the voting system explained in the next subsection.

These training and testing workflows can be orchestrated,
and there are different tools on the market to do so, namely
Kubeflow [27], Apache Airflow [28], and MLflow [29] [30].
See Table I for a benchmark of these options. Regarding the
five criteria used for this evaluation, it is important to clarify
some of these aspects:

1) Free to use: it does not consider infrastructure costs for
operability.

2) Metric-level analysis support: it considers the integration
of the orchestrator with other tools for data injection.

3) E2E ML workflow orchestration: it includes the end-to-
end process, from data collection to model versioning
and deployment. To do so, the orchestrators can use
third-party services.

Based on Table I, both Kubeflow and Airflow are useful for
this project; however, Kubeflow focuses on Machine Learning
tasks, while Airflow is a generic orchestration platform [31].
In addition, Kubeflow architecture [32] includes native support
for Jupyter Notebooks [33], data tools such as Istio [34] and
Prometheus [35], as well as metadata management for the
models. This explains the thoughts behind choosing Kubeflow
as the AI orchestrator.

Several options were also analyzed for data collection,
including Istio and Prometheus, but also InfluxDB [36] and
OpenTSDB [37], due to previous personal experience with
them. See Table II for this benchmark. A few criteria defini-
tions are also worth clarifying in this table:

1) Kubernetes monitoring: distributed, event-driven, and
ephemeral K8s containers [38] make it complicated to
capture and track metrics, so a data monitoring tool must
be able to handle this nature.

2) Free to use: as with the AI orchestrators benchmark,
this aspect does not consider infrastructure costs for
operability.

3) Metrics support: the counterpart is logging monitoring.
Metrics are needed to create a set of features to help
model the baseline of the K8s instances and train AI
algorithms.

4) Time-series format: tracking the metrics’ variations
across time is needed to understand their behavior better.

5) GitHub stars: data up to July 1st, 2022, was considered
and used as a popularity metric (i.e., with more popu-
larity, more community around the tool).

Based on Table II, it was concluded that Prometheus is a
suitable and popular tool for Kubernetes monitoring. Further-
more, Prometheus is a CNCF graduated project, indicating a
high maturity level that reflects strong adoption and a secure
code base [43].

B. Anomaly Detection Models

For the selection of the anomaly detection models for
OCC, it was considered the capabilities the algorithms offer
for fast prediction times and dealing with high-dimensional
problems, as well as the proven application from state of the
art. Regarding Machine Learning, One-class Support Vector
Machines (OSVMs) [44] and Isolation Forest (IF) [45] were
chosen; for Deep Learning, Autoencoders (AEs) [46] were
tested. PyTorch [47] and scikit-learn [48], [49] are the APIs
selected for coding the aforementioned models. PyTorch is a
popular and flexible Deep Learning framework for architecture
designs [50], and scikit-learn is an optimized and widely used
framework for building Machine Learning models [51].

OSVMs use hyperplanes to maximize the separation of the
anomalies from the normal instances [52], and they are also
applicable for cases where the density of the data distribution
is not well-defined [44]; IF constructs a profile of the instance
space using the path length of different trees, where those
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Fig. 1. Training workflow.

Fig. 2. Testing workflow.

TABLE I
ARTIFICIAL INTELLIGENCE ORCHESTRATORS BENCHMARK.

Kubeflow Kedro Airflow MLflow ZenML Opni
Native infrastructure served via Kubernetes ✔ ✗ ✔ ✗ ✗ ✔

Open source ✔ ✔ ✔ ✔ ✔ ✔

Free to use ✔ ✔ ✔ ✔ ✔ ✔

Metric-level analysis support ✔ ✔ ✔ ✔ ✔ ✔

E2E ML workflow orchestration ✔ ✔ ✔ ✔ ✔ ✗

TABLE II
DATA COLLECTION TOOLS BENCHMARK.

Prometheus Istio InfluxDB OpenTSDB
Handles the complex Kubernetes monitoring nature ✔ ✔ ✔ ✔

Open source ✔ ✔ ✔ ✔

Free to use ✔ ✔ ✗ ✔

Metrics support ✔ ✔ ✔ ✔

Time-series format ✔ ✔ ✔ ✔

GitHub stars (popularity) 43.2k [39] 30.7k [40] 23.7k [41] 4.7k [42]

instances closer to the root are considered anomalies [45];
AEs learn the distribution from the normal input instances
and considering the distribution difference between normal and
anomaly data, detect outliers based on the reconstruction error
(since the reconstruction error of anomaly data could be higher
than that of normal data) [46].

With these three models, two experiments were conducted
to evaluate the performance of the algorithms in supervised
and unsupervised settings. The supervised setting applied
offline learning and used the LATAM-DDoS-IoT dataset; the
unsupervised setting implemented online learning to query
real-time data from Aligo’s K8s infrastructure. These exper-
iments helped to better approximate how the final voting
system would behave in production. This final and deployed

voting system follows Eq. 1, where the variables x, y, and
z indicate the Autoencoder, Isolation Forest, and One-class
Support Vector Machine predictions. The values 0.6, 0.3, and
0.1 are the arbitrarily assigned weights to each prediction after
observing the models’ performance (i.e., a higher detection
rate meant a higher weight, therefore giving more importance
to that prediction). The metrics used to measure these detection
rates are specified in the paragraph below.

outlier_confidence_score = 0.6x+ 0.3y + 0.1z (1)

flow =

{
anomaly if outlier_confidence_score ≥ 0.9

inlier if outlier_confidence_score < 0.9
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TABLE III
SELECTED KUBERNETES METRICS GROUPED BY THE FOUR

GOLDEN SIGNALS OF MONITORING.

Category Metrics Question to answer

Latency
• API Server Request

Latency
• Scheduler E2E

Scheduling Latency

How long does it take
to service a task?

Traffic
• API Server Request

Rate
• Ingress Controller

Connections
• Scheduler Preemption

Attempts
• Pod Network Packets

How much demand is
placed on the environ-
ment?

Errors
• Scheduling Failed

Pods

How many fails exist?

Saturation
• Workqueue Depth
• Pod CPU Utilization
• Pod Memory Utiliza-

tion
• Pod Network I/O
• Pod Disk I/O

How much is the envi-
ronment being utilized?

For the supervised setting, the classification performance
was measured by computing the area under the Receiver Op-
erating Characteristic (ROC) curve (AUC) [53]. Unlike other
metrics, such as the F1 score, AUC is insensitive to changes
in the distribution of the training dataset [54]. AUC evaluates
the true positive detection rate (plotted on the y-axis) versus
the false positive detection rate (plotted on the x-axis). Since
many real-world problems have large numbers of negative
instances, performance in the upper left triangle of the ROC
graph is ideal for achieving [53]; for the unsupervised setting,
since there were not labeled records as ground truth, the
performance was estimated computing the accuracy assuming
all the testing instances were inliers, to indicate if the models
were able to extract patterns from the input data.

C. Feature Engineering

The defined metrics for monitoring the K8s infrastructure
health are in Table III. These metrics are grouped into the
four golden signals of monitoring: latency, traffic, errors, and
saturation [55]. See Table IV for the corresponding calculated
features (a result of monitoring data sources such as Neu-
Vector [56]). The features include the cumulative CPU time
consumed by the container, the current working set of the
container in bytes, the current depth of workqueue, and the
total preemption attempts in the cluster [57].

Additionally, to help convergence and avoid data bias, there
were performed experiments applying min-max normalization

[58] and feature standardization [59] using scikit-learn. See
Eq. 2–3, respectively.

x′ =
x−min(x)

max(x)−min(x)
(2)

x′ =
x−mean

stddev
(3)

In Eq. 2, each of the input features in x is scaled individually
to a given range, by subtracting the smallest value in the
numerator, and setting the difference between the largest and
smallest values in the denominator; in Eq. 3, the input features
are standardized by subtracting the mean and dividing by the
standard deviation, producing data with zero mean and unit
variance.

The results of the different experiments can be read in the
next section.

IV. RESULTS AND DISCUSSION

This section shows the results of the offline and online
learning experiments. For offline learning, a models bench-
mark by AUC value is presented; for online learning, the
developed voting system (explained in the previous section)
is deployed and tested to observe the real-time notifications of
the anomalies detected.

A. Offline Learning

Before implementing Kubeflow pipelines for online learn-
ing, the anomaly detection models selection was tested using
the LATAM-DDoS-IoT. From it, 5% of the total normal flows
and 1,998 DDoS attack flows were taken. Overall, the resulting
dataset size was 41,958 flows, with 95.24% normal traffic and
4.76% outliers, emulating a real-world scenario where negative
instances are way more than positive ones [7].

Due to the high detection rates reported in [1], the same data
split and hyperparameter tuning processes were performed: the
dataset was separated into 80% for training, 10% for valida-
tion, and 10% for testing, additionally the second feature set
proposed in the same work (i.e., the 15 best features) was used,
and an iterative hyperparameter tuning was conducted, trying
different configuration settings with the validation set. This
iterative tuning process consisted in, for instance, measuring
the classification performance of the OSVM using different
kernels, where the Radial Basis Function ended up being the
best one; for IF, different numbers of trees were tested, where
50 trees led to the best AUC value; and for AE, the number
of nodes in the fully connected layers was changed, where the
best architecture can be seen in Fig. 3 with 15 nodes in the
input layer and six nodes for the latent space. See Table V for
these best hyperparameters values for the Machine Learning
and Deep Learning models. The contamination hyperparame-
ter for the One-class Support Vector Machine and the Isolation
Forest, refers to the proportion of outliers used.

As commented in [23], the creation of a state-of-the-art
AI-based intrusion detection system needs adequate hyperpa-
rameter tuning to improve the efficiency of the predictions.
Although this optimization process may lead to overfitting,
conducting this tuning in a separate validation set is relevant
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TABLE IV
FEATURES DESCRIPTION FOR THE CREATED KUBERNETES DATASET.

Feature Description
timestamp Record measurement time.
api_server_request_latency Response latency.
api_server_request_rate Summation of the per-second rate of apiserver requests over the last 5 minutes.
scheduling_failed_pods Total number of failed scheduled pods.
workqueue_depth Current depth of workqueue.
scheduler_e2e_scheduling_latency 99th percentile of the E2E scheduling latency.
scheduler_preemption_attempts_total Summation of the per-second rate of preemption attempts until now over the

last 5 minutes.
active_client_connections Current number of client connections with active state.
reading_client_connections Current number of client connections with reading state.
waiting_client_connections Current number of client connections with waiting state.
writing_client_connections Current number of client connections with writing state.
container_cpu_cfs_throttled_seconds_total Summation of the per-second rate duration the container has been throttled

over the last 5 minutes.
container_cpu_usage_seconds_total Summation of the per-second rate of the CPU time consumption over the last

5 minutes.
container_cpu_system_seconds_total Summation of the per-second rate of the system CPU time consumption over

the last 5 minutes.
container_cpu_user_seconds_total Summation of the per-second rate of the user CPU time consumption over the

last 5 minutes.
container_memory_working_set_bytes Current working set in bytes.
container_network_receive_packets_total Summation of the per-second rate of the number of packets received over the

last 5 minutes.
container_network_receive_packets_dropped_total Summation of the per-second rate of the number of packets dropped while

receiving over the last 5 minutes.
container_network_receive_errors_total Summation of the per-second rate of the number of errors encountered while

receiving over the last 5 minutes.
container_network_transmit_packets_total Summation of the per-second rate of the number of packets transmitted over

the last 5 minutes.
container_network_transmit_packets_dropped_total Summation of the per-second rate of the number of packets dropped while

transmitting over the last 5 minutes.
container_network_transmit_errors_total Summation of the per-second rate of the number of errors encountered while

transmitting over the last 5 minutes.
container_network_receive_bytes_total Summation of the per-second rate of the number of bytes received over the

last 5 minutes.
container_network_transmit_bytes_total Summation of the per-second rate of the number of bytes transmitted over the

last 5 minutes.
container_fs_reads_bytes_total Summation of the per-second rate of the number of bytes read over the last

5 minutes.
container_fs_writes_bytes_total Summation of the per-second rate of the number of bytes written over the last

5 minutes.

to leave the testing set only for reporting the final classification
results with the models finished.

The One-class Support Vector Machine and the Autoen-
coder present their best result after min-max normalization,
while Isolation Forest presents it after data standardization.
See Fig. 4 for the AUC of all these three models. Autoen-
coder is the best-evaluated algorithm and detects 88% of the
outliers. Furthermore, Isolation Forest is the best ML model,
and One-class Support Vector Machine is still better than
random guessing (i.e., the blue dashed line). Nevertheless,

higher true positive rates may be achieved with a more robust
hyperparameter tuning.

B. Online Learning

Two Kubeflow pipelines were coded and deployed: one
for training and the other for testing. The training pipeline
collected data from Aligo’s on-premise K8s infrastructure for
ten days using the Prometheus HTTP API. This data is per
minute and adds up to 11,846 records, divided into 90% to
build the AI models and 10% to estimate their classification
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TABLE V
SUMMARY OF THE BEST HYPERPARAMETERS VALUES FOR

THE DIFFERENT MACHINE LEARNING AND DEEP
LEARNING MODELS.

Model Hyperparameters

One-class Support Vector
Machine

• Kernel: Radial Basis Func-
tion

• Kernel coefficient: 1 / num-
ber of features

• Contamination: 5%

Isolation Forest

• Number of trees: 50
• Samples to train each tree:

256
• Contamination: 1%

Autoencoder

• Epochs: 10
• Batch size: 256
• Activation function: ReLU
• Loss function: Mean Squared

Error
• Optimizer: Adam
• Learning rate: 0.001
• See Fig. 3 for the architec-

ture.

Fig. 3. Best Autoencoder architecture.

Fig. 4. LATAM-DDoS-IoT dataset results.

Fig. 5. Telegram message with the training pipeline results.

performance. The duration of one minute was decided after
considering it a reasonable time to see variations of the
features presented in Table IV. Regarding the data split, since
the same best hyperparameters values obtained from the offline
learning experiment were used, no extra set for validation was
maintained (i.e., for further hyperparameter tuning), adding up
that potential 10% to the 80% of training data.

The training results are received via chat through a Telegram
bot. See Fig. 5 for these estimated results, which indicate a
substantial pattern extraction from the input data (i.e., a high
accuracy and a low training loss).

For passing data through each step of the pipelines, MinIO
[60] was used, and Amazon S3 [61] was used for passing
data between pipelines. Amazon S3 allowed the storage and
organization of the resulting models and datasets, retaining
valuable information to maintain a timeline of different runs
and enabling further detailed comparisons.

Chaos Engineering experiments [62] were run to test the
trained models, similar to what Netflix has done in the past
[63], [64]. Chaos Mesh [65] was used, a CNCF project
personally considered more straightforward than Litmus [66].
A stress scenario was created where a memory saturation
experiment was automated against a set of pods in a target
namespace. These pods are randomly stressed for five minutes,
at the start of every hour, by four threads that occupy 4,096
MB. See Fig. 6 for the results of running this saturation.

The Kubeflow testing pipeline was scheduled to run every
minute. See Fig. 7 for the real-time alerts received on Telegram
for the three peaks noticed from Fig. 6. Prometheus time is in
UTC, while Telegram messages show the local time zone (i.e.,
UTC-5). The defined and deployed voting system is 100%
confident when detecting these anomalies. This saturation
experiment may be a good starting point to measure the AI
system performance since memory issues like SYN scanning
[67], NOP sled [68], and resource exhaustion [69] are crucial
to be detected on time.

The next section presents the conclusions and future work
that can be carried out.

V. CONCLUSIONS AND FUTURE WORK

This paper shows the definition, implementation, and testing
of a cloud-native infrastructure to develop AI projects at Aligo
(see Fig. 8). It went from features definition and data collection
to pipeline deployment and Chaos Engineering experiments.
The created anomaly-based detection system presents strong
performance and aims to reduce the time network engineers
spend in front of a computer looking at any outliers.
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Fig. 6. Chaos Engineering experiment for memory saturation.

Fig. 7. Alerts received on Telegram.

However, more data may be needed to model a more robust
baseline. In future work, the retention period of Prometheus
(which by default is 15 days [70]) is planned to be extended
to collect more records from the target instances. Furthermore,
the One-Class Classification approach helps only in detecting
outliers, so there is now the need to add at least another
layer of classification, for instance, to indicate if the detected
anomaly corresponds to a specific attack [71] and, with this,
ease the troubleshooting of the problem.

Additionally, since the same tuned hyperparameters values
from the LATAM-DDoS-IoT dataset were used for online
learning, the integration of an automated hyperparameter tun-
ing technique, such as Random Search [72], is now required.
It could reduce the amount of human effort when training by
automatically adjusting the values of the hyperparameters to

ensure the same or similar classification performance results
whenever the input training data changes.

Although the Kubeflow infrastructure was deployed on-
premise, the solution proposal presented in this work combines
cloud elements, namely the communication with Amazon S3
and the Telegram bot. These elements may fail, and network
interruptions may exist. Therefore, as future work, alternative
internal storage must be implemented for the resulting models
and datasets from the online learning process, as well as look
for another communication channel to alert about detected
anomalies.
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Fig. 8. Summary of the different work presented in this paper.
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for (cyber-) security and (cyber-) security of neural networks,” Neuro-
computing, vol. 500, pp. 1075–1087, 2022.

[24] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-iot dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019.

[25] R. Biswas and S. Roy, “Botnet traffic identification using neural net-
works,” Multimedia Tools and Applications, vol. 80, no. 16, pp. 24147–
24171, 2021.

[26] D. A. Tamburri, “Sustainable mlops: Trends and challenges,” in 2020
22nd International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), pp. 17–23, 2020.

[27] “Kubeflow. https://www.kubeflow.org/.”
[28] “Apache airflow. https://airflow.apache.org/.”
[29] “Mlflow. https://mlflow.org/.”
[30] “Machine learning operations.” https://www.run.ai/guides/machine-

learning-operations. Accessed on 5 December 2022.
[31] “Kubeflow vs airflow.” https://hevodata.com/learn/kubeflow-vs-airflow/.

Accessed on 5 July 2022.
[32] “Kubeflow architecture.” https://www.kubeflow.org/docs/started/

architecture/. Accessed on 5 July 2022.
[33] “Jupyter. https://jupyter.org/.”
[34] “Istio. https://istio.io/.”
[35] “Prometheus. https://prometheus.io/.”
[36] “Influxdb. https://www.influxdata.com/.”
[37] “Opentsdb. http://opentsdb.net/.”
[38] “Kubernetes architecture for ai workloads.”

https://www.run.ai/guides/kubernetes-architecture. Accessed on 5
July 2022.

[39] “Prometheus repository: https://github.com/prometheus/prometheus/.”
[40] “Istio repository: https://github.com/istio/istio/.”
[41] “Influxdb repository: https://github.com/influxdata/influxdb/.”
[42] “Opentsdb repository: https://github.com/opentsdb/opentsdb/.”
[43] “Cncf cloud native interactive landscape.” https://landscape.cncf.io/.

Accessed on 6 July 2022.
[44] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.

Williamson, “Estimating the Support of a High-Dimensional Distribu-
tion,” Neural Computation, vol. 13, pp. 1443–1471, 07 2001.

[45] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly
detection,” ACM Trans. Knowl. Discov. Data, vol. 6, mar 2012.

[46] C. Yin, S. Zhang, J. Wang, and N. N. Xiong, “Anomaly detection
based on convolutional recurrent autoencoder for iot time series,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 1,
pp. 112–122, 2022.

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran
Associates, Inc., 2019.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[49] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine

learning software: experiences from the scikit-learn project,” in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
pp. 108–122, 2013.

[50] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu,
S.-C. Chen, and S. S. Iyengar, “A survey on deep learning: Algorithms,
techniques, and applications,” ACM Comput. Surv., vol. 51, sep 2018.

[51] M.-A. Zöller and M. F. Huber, “Benchmark and survey of automated
machine learning frameworks,” J. Artif. Int. Res., vol. 70, p. 409–472,
may 2021.

[52] D. M. J. Tax and R. P. W. Duin, “Support vector data description,”
Machine Learning, vol. 54, no. 1, pp. 45–66, 2004.

[53] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, 2006. ROC Analysis in Pattern
Recognition.

[54] N. Japkowicz, Assessment Metrics for Imbalanced Learning, ch. 8,
pp. 187–206. John Wiley & Sons, Ltd, 2013.

[55] N. Murphy, B. Beyer, C. Jones, and J. Petoff, Site Reliability Engineer-
ing: How Google Runs Production Systems. O’Reilly Media, 2016.

[56] “Neuvector. https://neuvector.com/.”
[57] “Kubernetes metrics reference.” https://kubernetes.io/docs/reference/

instrumentation/metrics/. Accessed on 2 December 2022.
[58] Y. Kayode Saheed, A. Idris Abiodun, S. Misra, M. Kristiansen Holone,

and R. Colomo-Palacios, “A machine learning-based intrusion detection
for detecting internet of things network attacks,” Alexandria Engineering
Journal, vol. 61, no. 12, pp. 9395–9409, 2022.

[59] M. A. Pirbonyeh, M. A. Shayegan, G. Sotudeh, and S. Shamshirband,
“Heterogeneous domain adaptation by features normalization and data
topology preserving,” Knowledge-Based Systems, vol. 257, p. 109536,
2022.

[60] “Minio. https://min.io/.”
[61] “Amazon s3. https://aws.amazon.com/es/s3/.”
[62] “Principles of chaos engineering.” https://principlesofchaos.org/. Ac-

cessed on 8 August 2022.
[63] “The netflix simian army.” https://netflixtechblog.com/the-netflix-

simian-army-16e57fbab116. Accessed on 8 August 2022.
[64] “Netflix chaos monkey upgraded.” https://netflixtechblog.com/netflix-

chaos-monkey-upgraded-1d679429be5d. Accessed on 8 August 2022.
[65] “Chaos mesh. https://chaos-mesh.org/.”
[66] “Litmus. https://litmuschaos.io/.”
[67] A. Rodríguez and L. Castillo, “A first step towards a general-purpose

distributed cyberdefense system,” in Advances in Practical Applications
of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection
(Y. Demazeau, B. An, J. Bajo, and A. Fernández-Caballero, eds.),
(Cham), pp. 237–247, Springer International Publishing, 2018.

[68] X. Huang, F. Yan, L. Zhang, and K. Wang, “Honeygadget: A deception
based approach for detecting code reuse attacks,” Information Systems
Frontiers, vol. 23, no. 2, pp. 269–283, 2021.

[69] J. Antunes, N. F. Neves, and P. Veríssimo, “Detection and prediction of
resource-exhaustion vulnerabilities,” in 19th International Symposium on
Software Reliability Engineering (ISSRE 2008), 11-14 November 2008,
Seattle/Redmond, WA, USA, pp. 87–96, IEEE Computer Society, 2008.

[70] “Prometheus storage.” https://prometheus.io/docs/prometheus/latest/
storage/. Accessed on 8 August 2022.

[71] “6 common kubernetes and container attack techniques and how to
prevent them.” https://www.paloaltonetworks.com/blog/prisma-cloud/6-
common-kubernetes-attacks/. Accessed on 8 August 2022.

[72] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, p. 281–305, feb 2012.

Josue Genaro Almaraz-Rivera received the B.S.
degree in computer science from Universidad Au-
tonoma de Nuevo Leon, Mexico, in 2020, and the
M.S. degree in computer science from Tecnologico
de Monterrey, Mexico, in 2022, where he is currently
pursuing the Ph.D. degree in computer science.

He has worked at companies such as Apple and
Meta. Also, he was a TEDx speaker at two events
at Universidad Autonoma de Nuevo Leon, in 2017
and 2018, with the Social Hacking and Artificial
Intelligence topics.

His current research interests include Self-Supervised Learning and its
potential application to cybersecurity.


	Introduction
	Related Work
	Methodology
	Selection of Artificial Intelligence and Data Tools
	Anomaly Detection Models
	Feature Engineering

	Results and Discussion
	Offline Learning
	Online Learning

	Conclusions and future work
	References
	Biographies
	Josue Genaro Almaraz-Rivera


