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Transfer Learning for Face Anti-Spoofing Detection
Sandoval Veríssimo, Guilherme Gadelha, Leonardo Batista, Member, IEEE, João Janduy and Fábio Falcão

Abstract—In recent years, the demand for facial biometric
authentication services has increased dramatically. Also, the
efforts to cheat this type of system have become more common.
In this paper, we propose a single shot CNN-based solution for
the face anti-spoofing problem. We trained a deep learning model
using transfer learning from a pre-trained VGG16 model. After
some pre-processing we rely solely on the network to classify
an image. We evaluate several implications of the preprocessing
of data, investigate the implications of different amounts of
background included in the picture, and the effect of data
subsampling. Additionally, we analyze what happens when we
sub-sample the training data. We evaluate our results in four
publicly available datasets, drawing some insights on the results
by using the Grad-CAM algorithm. Our approach is competitive
when compared with similar methods. Moreover, we achieved our
results while training with a fraction of the original datasets,
enforcing that experiments can be run much quicker without
sacrificing accuracy.

Index Terms—Face Anti-Spoofing, Transfer Learning, Deep
Learning, VGG16

I. INTRODUCTION

Due to worldwide health reasons [1], [2], social distancing
and isolation started to be encouraged [3]. Biometric

authentication is then in high demand [4]. Face anti-spoofing
is essential [5] to ensure secure facial recognition, facial
detection, and other biometric verification systems. A "presen-
tation attack" [6] is the presentation of an artifact or human
characteristic to the biometric capture subsystem in a way
that could interfere with the intended security policy of the
biometric system. Often, attackers use images from social
networks as a form of presentation attack.

Due to the recent rise in the popularity of biometric authen-
tication systems, presentation attacks (or spoofing) have also
grown in number [7]. Therefore, it is essential to combine both
the biometric authentication system with some form of anti-
spoofing detection. Presentation attacks are often performed
in 3 main approaches: Photo attacks, where the attacker uses
a photo of the person to fool the system; Video replay attack,
where a pre-recorded video is used to simulate a live person,
and 3D mask attacks, where the attacker relies on 3D masks
to try to fool the system. The first two methods are more
commonly used since it is costly to get a 3D mask.

To combat these attacks, we can use either passive or
active methods. There are several ways to perform passive
presentation attack detection (PAD), such as motion, texture,
or reflectance analysis. Each of these approaches has advan-
tages and disadvantages. On active spoofing detection, the
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system requests input action from the user, such as looking
left or looking right. This active spoofing detection works
better against pre-recorded videos or photo attacks; however,
3D masks can bypass it to a certain degree.

Some approaches depend on specific hardware to gather
more information to identify an attack. For example, thermal
cameras can easily spot temperature differences between a
person and a device. Additionally, we noticed that hardware-
dependent methods are often combined [8], [9] with image-
based methods. That said, that hardware is usually not avail-
able for the general public, making it less accessible and unfit
for general purpose use.

In this work, we focus on face anti-spoofing using only a
monocular camera. In image processing, Convolutional Neural
Networks (CNNs) have gained increased popularity in the
last decade. CNNs can learn features to identify an attack
during its training process [10], [11]. In this paper, we propose
implementing a single shot CNN-based solution for the face
anti-spoofing problem. The single-shot approach means that
only one photo is required to identify an attack instead of a
sequence of video frames. Inspired by the work of [12] we
also employ transfer learning on a VGG model. However,
differently from their work, we do not include a PCA and
an SVM to aid in the classification. Instead, we rely on the
network alone to make all the decisions leading up to the
classification.

The methodology used in this paper focuses on a data-
centric approach. We evaluate several implications of the
preprocessing of data, investigate the best amount of back-
ground to be included in the picture, the effect of data
augmentation, and investigate the differences between different
capture devices. Additionally, we analyze what happens when
we sub-sample the training data. To the best of our knowledge
no other paper has commented on the subsampling matter.

We evaluate our results in four publicly available datasets:
OULU-NPU [13], Replay Attack [14], MSU-FASD [15] and
NUAA [16], comparing the results with the ones presented
in the literature. We then draw some insights using the Grad-
CAM [17] algorithm. Our best results have achieved less than
0.2% EER in a specific dataset.

II. RELATED WORKS

This section will review some of the most common face
anti-spoofing methods, focusing on general consumer devices.
It is worth noting that these methods can be combined in a
single system in a real case scenario. Such combinations are
made so that some methods strengths can compensate for other
methods weaknesses.
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A. Liveness Cue-Based Methods

Liveness cue-based methods attempt to detect variations on
the image that can indicate liveness, such as movement, eyes
blinks, change in facial expression, and even micro-intensity
variations of the blood pulse. These methods can be used both
in an intrusive or non-intrusive way. In the first approach,
a specific action is required from the user, whereas the last
approach can be performed without user knowledge. Earlier
works on non-intrusive methods used frequency-based features
[18], 3D maps to estimate head motion [19], optical flow lines
[20], eye blinks [21] and others. Intrusive works usually rely
on a command-and-response system, in which the user has to
match a certain action, such as saying a random sequence of
numbers [22].

B. Texture Based Methods

Texture-based methods are the most used for the Face Anti-
Spoofing problem. These are inherently non-intrusive methods
that perform well on photo and display attacks.

Static texture-based methods rely on a single image
to detect an attack. These include methods such as light
reflectivity difference [18], light reflectivity with Difference
of Gaussian (DoG) filtering [16], Contrast Limited Adaptive
Histogram Equalization (CLAHE) [23], Local Binary Patterns
(LBP) [24], Gabor Wavelets [25] and Histogram of Oriented
Gradients (HOG) [26].

On the other hand, dynamic methods use temporal infor-
mation of a sequence of images. Works also include the use
of LBP [27], Histogram of Oriented Optical Flows (HOOF)
[28], Fourier residual noise video analysis [29]. More recent
works make use of CNNs; we detail these in subsection II-D.

C. 3D Geometric Cue-Based Methods

3D geometric cue-based methods use 3D geometric fea-
tures to differentiate between a spoof and a genuine user.
Approaches focus on the 3D reconstruction of the face based
on a 2D photo [30] or the depth estimation of the image.
The latter can more easily be done with specific 3D cameras;
however, since this is not available for the general public, other
methods are needed to predict the depth of a single image.
Works such as [31] make use of a pseudo depth map of an
image on a sequence of images.

D. CNN-Based Methods

Although they can also be used in texture-based methods
and 3D pseudo-depth-based methods, we decided to dedicate
a specific subsection to CNN-based approaches because our
work focuses on a CNN solution.

The first work to employ CNNs on the face anti-spoofing
problem [10], used a simple AlexNet with an SVM classifier at
the end. The authors also confirmed a previous hypothesis that
enlarging the face bounding box to include more background
was beneficial for the model.

In [32], a proposed solution with the same network but
without the SVM classifier was made. The work also proposed

a voting system between a model trained on aligned faces and
faces with the background.

The work in [12] proposed to make use of transfer learning
into a model of the VGGFace network with images of the face
spoofing problem. While methodologically similar to one of
our approaches, the model itself would not classify the images.
Instead, the work used CNN to extract a single fused feature
and then use it on an SVM to make the classification.

In [33], a model is trained using two loss functions cal-
culated on the final feature map, before the and classification
result of the network was outputted. The losses were calculated
on a per-pixel level, and results were promising.

More recent works such as [34] and [35] focus their
approaches in domain generalization and domain invariant
feature alignment. However none of these works use the
same methods and the same datasets as our work, thus a fair
comparison is not possible

III. METHODOLOGY

In this section, we detail the datasets used for training and
evaluation. Also, we explain the preprocessing steps of the
input images that we experimented and the impact they had
on training and results. And finally we discuss the selected
network architecture and the metric used for evaluation.

A. Datasets

1) Replay Attack: The Replay Attack dataset [14] is well
known and vastly used in Face Anti Spoofing works. It
consists of 1200 videos, where 200 are from real people, and
1000 are from attacks. These videos are divided among 50
identities with 15,15,20 identities for train, validation, and
test, respectively. There is no overlap in identities between
the different partitions—genuine and attack videos average
around 15 and 9.5 seconds of duration, respectively. After
extracting all the frames, we ended up with around 75000
authentic images and 235000 attack images. The videos were
recorded in two ways: a controlled scenario with a uniform
background, and a less-controlled scenario where the person
stands in front of a less uniform background. The attacks were
made using prints, photos on display, and video recordings.

2) NUAA: The first public dataset for the face anti-spoofing
problem. The NUAA [16] dataset has around 12000 images
of 16 individuals. By default, the dataset has only a train and
test split. There is also an overlap in identities between the
sets. The attacks on the dataset are only made with printed
photos. The capture sessions were made in three different
environments, thus changing the background between sessions.
Not all identities have real and attack photos in all three
sessions. There is also no pattern on how many images of
each subject or each session exists.

3) MSU-MFSD: With 280 videos, 70 of them of genuine
users and 210 of attacks, the MSU-MFSD [15] dataset is
another publicly available dataset. There are a total of 35
identities in this dataset. These identities are divided initially
into 15 for training and 20 for testing. The frame rate and
length of the videos vary. After extracting the frames, we
ended up with approximately 19000 authentic images and
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58000 attack images. The attacks consist of printed photos
and videos. This dataset was the first to introduce a mobile
scenario on the attacks (previous attacks were replayed usually
on iPad devices).

4) OULU-NPU: One of the newer datasets, OULU-NPU
[13] was released in 2017. The dataset has 55 identities
organized in 20 for training, 15 for validation, and 20 for
testing. In total, there are 4950 videos, of which 990 are from
real people. After extracting all the frames, we had around
130000 authentic and 530000 attack images. The amount of
images in this dataset alone is greater than all the other datasets
combined. Thus, another use of subsampling is to assure all
the datasets are equally represented during the training process.
The dataset mainly focuses on mobile devices cameras as the
capture devices. The attacks are made with both print and
replay methods.

B. Data Preprocessing

Previous works on the face anti-spoofing problem often
use data preprocessing techniques to leverage models results.
Our work focused mainly on four aspects: face cropping,
face alignment, dataset subsampling, and data augmentation.
Details and explanations on why we decided to do these
preprocessing operations are given in the subsections below.

1) Face Cropping: In the face anti-spoofing domain, pre-
processing the images is commonly done to standardize the
data the model receives [11]. The network can focus on
learning patterns in the same vicinity with fewer variations
between faces. The simplest way to do this is by cropping all
the region that is not the face. The first preprocessing step we
did was to use the Dlib [36] face detector to detect the faces in
the images, and then we cropped only the faces and discarded
the rest of the image.

There are a few problems with this approach, however. First,
cropping the image does not mean that it will keep the same
width x height ratio, as the face bounding boxes may or may
not be square. Since the input of the VGG model is 224x224,
we often distort the image and stretch it in some direction.
Further explanation of the results will be shown in section IV.

2) Face Alignment: Face alignment starts by identifying the
structure of the human face with any face detector algorithm
or technique. Then, we can attempt to align the face using
translation, scale, and rotation operations. Doing so allows all
the faces to be standardized based on a common point, such
as eyes localization, as done by [37]. It also solves the simple
crop’s stretching problem since the geometric operations are
done on expected output.

On the other hand, with both the crop and face alignment,
background is lost. Background information can have features
that identify an attack, such as fingers holding a photo or the
borders of a display. Nevertheless, allowing background in the
image allows for more varied scenarios to be seen during the
training process; this can hamper the model’s accuracy.

Considering this trade-off, we decided to experiment with
different alignments. Using the Dlib face detector, we have
information about the eyes locations. We then rotate the image
according to the line between the eyes; then we align the

faces on the central point between the eyes. After that, we
set different fixed distances between the eyes (in pixels). This
work evaluates the effects of alignments with five different
distances between the eyes: 125, 100, 75, 67, and 50 pixels.
We choose this values based on preliminary experiments, and
found that these values were enough to understand the effect
of different distances between the eyes on each dataset.

3) Subsampling: Due to the high frame rate of capture
devices, there is not much variation between two frames. In
order to reduce the amount of redundant information on the
training and validation sets, we examined the implications of
subsampling the datasets. Thus, we can compare the results
and evaluate if our model can learn with fewer training images
but more significant variations.

The subsampling procedure was done with the Structural
Similarity Index Measure (SSIM) [38]. This algorithm is used
to measure the similarities between two images. The number
of images we kept at the end of the subsampling process
was 12000 for each dataset. We chose this number since the
smallest dataset (NUAA) has approximately this amount of
images. Thus, all the datasets should have the same importance
on the training process. We were also careful to keep the
number of images per subject roughly the same in order to
not incentivize any bias on a few identities. It is worth noting
that since the NUAA dataset is already the smallest one in our
experiments, this dataset is not being subsampled.

C. Network And Transfer Learning
Training CNNs from scratch can be a very time-consuming

process. Depending on the amount of training data, converging
into a robust CNN can take days even if top-quality hardware
is available. One solution to reduce the training time is to
use Transfer Learning from a network previously trained on a
similar domain [39]. For example, we may use the knowledge
acquired from a network trained for images classification -
and later applied to facial recognition problems - like VGG
[40] and apply it to the Face Anti-Spoofing domain with some
adaptations of the network architecture.

Inspired by the work of Li et al. [12], we decided to
use the VGG architecture as our base model, in our case,
the VGG16. The VGG16 architecture [41] was proposed to
classify the ImageNet dataset [42]. The dataset consists of
over 14 million images divided into 1000 classes. The original
VGG16 work was able to achieve over 92% top-5 accuracy.
The model was trained for weeks using NVIDIA Titan Black
GPU. The architecture comprises six blocks, five of them
consisting of a couple of convolutional layers followed by a
pooling layer. The final block consists of three different dense
layers leading up to a softmax classification layer. Figure 1
[43] shows a scheme of the VGG16 model. It is worth noting
that the decision to use the VGG16 model was taken after
some preliminary experiments which showed that the transfer
learning to a VGG16 model achieved better results than to the
InceptionV3, MobileNetV2 and VGG19 architectures.

D. Training Parameters
We also defined a few hyperparameters for the training

process, along with performing a transfer learning to the face
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Fig. 1. VGG16 architecture scheme.

anti-spoofing domain on a VGG16 network. We added one
dense layer before the classification layer. These two layers
were the only ones to be trained from scratch, the base model
weights were not modified. Table I shows the hyperparameters
used in the training process.

TABLA I
TRAINING PARAMETERS USED ON THE NETWORK

Hyperparameter Value
Optimizer Adamax
Batch Size 16

Learning Rate 0.001
Dense Units 128

Dropout 0.3
# Epochs 10

These values were chosen after some initial experiments
in a sample of the total amount of images. We varied each
of these hyperparameters and studied the effects this change
would imply on the accuracy of the model.

E. Metrics

We use the Equal Error Rate (EER) metric, which is a
standard metric in the field [11]. The EER is defined as the
point where False Acceptance Rate (FAR) and False Rejection
Rate (FRR) are equal, considering a range of thresholds -
usually between 0.0 and 1.0. This threshold determines if an
image is an attack or not based on the comparison with the
neural network output value for that specific image. Figure 2
[44] shows the identification of the EER point.

Fig. 2. Equal Error Rate identification

IV. EXPERIMENTS AND RESULTS

Below we discuss the experiments and results. For each
experiment, we trained a network with the parameters defined
in section III-D.

A. Face Cropping

We started our experiments evaluating the impact of face
cropping in each dataset individually. After evaluating the
NUAA, MSU, Replay Attack and OULU datasets, we noticed
a stretching image issue. As explained before, this happens
because cropped images need to be resized to the 224x224
input size of the VGG16 network, and as such, distortions
would often happen. Each experiment model was trained and
evaluated on a single dataset.

TABLA II
EER ON RAW VS CROPPED DATASETS.

Test Dataset Raw Images Cropped
NUAA 0% 4.18%

Replay Attack 0.67% 3.15%

MSU-FASD 5.32% 8.83%

OULU 4.69% 14.98%

Table II shows a comparison between the results of our
method on both cropped and raw images. We can observe that
the model achieved a worse performance across all datasets
individually evaluated. These results suggest that non-facial
features on the image, such as background, may contain
valuable information to differentiate as spoofing attack from a
real user.

Even though all models performed worse on the cropped
version of the dataset, the impact of the crop was different
in each one. For the NUAA dataset in particular the EER
which was 0% reached over 4%. Looking at the images of
the dataset, we believe that since most of the NUAA images
are from people holding printed photos, the information of
the borders of the paper and the fingers of the impostors was
important in identifying some attacks.

B. Subsampling

Along with experimenting with the crop, we also analyzed
the impact of the subsampling. The main purpose of these
experiments was to understand how much the subsampling of
training and validation sets affects the overall performance.
Similarly to the face cropping experiments, we trained with
all datasets (NUAA, MSU, Replay Attack and OULU) indi-
vidually and tested in each one separately. The raw images
experiments have no preprocessing as facial cropping, our goal
is analyze these two preprocessing steps in parallel. The results
are shown in Table III.

In Table III, the EER was higher for the Replay Attack and
OULU datasets. Moreover, the results show no change in the
EER for the NUAA dataset, and a 0.04% difference for the
MSU-FASD dataset. We believe that this happened because all
the datasets now have roughly the same proportions during the
training process; therefore, the network learned more features
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TABLA III
EER ON RAW VS SUBSAMPLED DATASETS.

Test Dataset Raw Images Subsampled
NUAA 0% 0%

Replay Attack 0.67% 1.98%

MSU-FASD 5.32% 5.36%

OULU 4.69% 7.18%

from the MSU-FASD and NUAA datasets and was less biased
towards the OULU and ReplayAttack datasets.

It is also noteworthy that the two smallest datasets did not
have any or had very little change in the EER. For the NUAA
dataset kept the same 0% EER. This is expected, since this
dataset was not subsampled at all. For the MSU-FASD dataset,
a difference of 0.04% happened, a 0.75% increase on the
overall EER of the first experiment.

C. Face Alignment

Again, in this case, each experiment used a single dataset
for training and testing, i.e. following an intra-dataset eval-
uation protocol [11]. As we explained in Section III-B2, we
experimented with five different eye distances. The results can
be seen in Table IV.

TABLA IV
EER PER DATASET BY VARYING DISTANCE BETWEEN THE

EYES (IN PIXELS).

Dataset 125px 100px 75px 67px 50px
NUAA 13.32% 5.30% 2.40% 1.75% 0.10%

Rep. Attack 2.72% 4.45% 5.53% 4.44% 12.86%

MSU-FASD 12.53% 15.93% 12.00% 12.82% 11.77%

OULU-NPU 14.97% 14.62% 13.44% 12.65% 14.01%

These results show that each dataset has its own best align-
ment. Thus, we cannot decide on a single distance between
the eyes that works for all datasets.

D. Brightness

We also did experiments with varying brightness as a means
of data augmentation. The motivation behind these tests was
to show more varying images to the network during training.
As real scenarios may not be very well illuminated, we believe
this change can improve real-world case images. Table V
shows the results of this experiment across all the datasets,
using the best possible alignment according to the results
obtained earlier.

As we can see, the brightness variation had no beneficial
effect on any of the evaluated datasets. We believe that this
happens because all the datasets were made in very controlled
lightning conditions, and applying variations on the training
set misguides the network learning process.

E. Discussion

1) Raw Images: The results on the raw images were
promising. We believe that training a model using raw images

TABLA V
EER PER DATASET WHEN USING OR NOT

BRIGHTNESS-BASED DATA AUGMENTATION.

Dataset With Brightness Var. Without Brightness Var.
NUAA 0.36% 0.10%

Replay Attack 4.41% 2.72%

MSU-FASD 14.03% 11.77%

OULU-NPU 13.88% 12.65%

(a) Original Im-
age

(b) Deformed Im-
age

Fig. 3. Comparison between an original image and the same image
after resize.

of a single dataset would achieve good results. However,
this model would provide a servery lack of generalization
capabilities, which does not equal something good for real
case scenarios.

2) Image Stretching: Both the cropped faces and the raw
images had to be resized to match the input size of the
VGG16 architecture. This resize operation introduced some
image deformations on the images. These deformations vary
depending on the resolution of the original image and the
detected bounding box size. We believe that this stretching
pattern would hinder the performance in different real sce-
narios, despite the promising results achieved in the first two
experiments. The stretching can be observed in Figure 3.

3) Brightness Variations: The brightness variations did not
show any improvements in the results. The primary motivation
of the data augmentation is to provide more varying scenarios
in training time which would be more challenging so that
the network can correctly predict a more different assortment
of test images. On the other hand, the results show that
introducing different brightness levels were detrimental to the
model’s performance. Thus, we believe that the models are
still very limited in achieving good results only on the very
controlled scenarios.

4) Grad-CAM Analysis: The Grad-CAM algorithm allows
us to identify the regions that activated the network’s re-
sponses. This way, we can identify the most critical features
and regions of the image when making a classification. Figure
4 shows an example of the Grad-CAM on some images.

It is possible to see that for the attack images, the regions
that activated the network’s response were either around the
edges of the print attacks or on the fingers of the people
holding the photo. Aside from these cases, whenever an image
does not activate the network, it is also classified as an attack.
For authentic images, it is seen that the regions of the forehead
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Fig. 4. Images with Grad-CAM heatmaps.

and the cheeks activate when making a correct prediction.
5) Comparison with other static methods: To better show

how our results compare against other static methods, we made
the table VI.

TABLA VI
EER PER DATASET WHEN USING OR NOT BRIGHTNESS IN

DATA AUGMENTATION.

Dataset Method EER%
NUAA LBP+Gabor Wavelets+HOG [45] 1.10%

NUAA LBP+LPQ+HOG [46] 1.90%

NUAA MLPQ-TOP [47] 1.10%

NUAA Ours 0.10%

Replay Attack Fine-Tuned-VGGFace [12] 8.40%

Replay Attack DPCNN [12] 2.90%

Replay Attack Patch Based CNN [31] 2.50%

Replay Attack Ours 2.72%

MSU-MFSD Color LBP [48] 10.80%

MSU-MFSD GFA-CNN [49] 7.50%

MSU-MFSD Ours 11.77%

OULU-NPU DeepPixBis [33] 6.00%

OULU-NPU FaceDs [50] 4.30%

OULU-NPU CPqD [51] 6.90%

OULU-NPU Ours 12.65%

V. CONCLUSIONS

In this work, we experimented with some preprocessing
factors on some of the most well-known datasets for the
face anti-spoofing problem. We aimed to achieve competitive
results while also employing good practices for ensuring a
good data generalization. Our approach, based on the transfer
learning of a VGG16 network, achieved competitive results
for similar methods that use static texture for classification.
Moreover, we achieved this result while training with a frac-
tion of the original datasets, enforcing that experiments can
be run much quicker without sacrificing accuracy. We also
concluded that the brightness variations as a means of data
augmentation are not beneficial on the datasets. The existing
datasets have very controlled lightning conditions, even though
the introduction of illumination variation on the train images
theoretically would be beneficial for a real case scenario. We
also want to investigate the implications of training simpler
networks as a means to reduce over-fitting.
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