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Post-Processing Improvements in Multi-Objective

Optimization of General Single-Server Finite

Queueing Networks

Gabriel L. de Souza , Anderson R. Duarte , Gladston J. P. Moreira , and Frederico R. B. Cruz

AbstractÐAn alternative mathematical programming formu-
lation is considered for a mixed-integer optimization problem
in queueing networks. The sum of the blocking probabilities
of a general service time, single server, and the finite, acyclic
queueing network is minimized, and so are the total buffer
sizes and the overall service rates. A multi-objective genetic
algorithm (MOGA) and a particle swarm optimization (MOPSO)
algorithm are combined to solve this difficult stochastic problem.
The derived algorithm produces a set of efficient solutions for
multiple objectives in the objective function. The implementation
of the optimization algorithms is dependent on the generalized
expansion method (GEM), a classical tool used to evaluate the
performance of finite queueing networks. We carried out a set of
computational experiments to attest to the efficacy and efficiency
of the proposed approach. In addition, we present a comparative
analysis of the solutions before and after post-processing. Insights
obtained from the study of complex queue networks may assist
the planning of these types of queueing networks.

Index TermsÐQueueing networks, conflicting objectives,
buffer allocation, particle swarm optimization.

I. INTRODUCTION

T
he flow of services, users, and products, among others,

always appears to be associated with some uncertainty.

This uncertainty leads to the formation of queues to man-

age this flow. Of these processes, several can be modeled

as queueing systems. In general, these processes are more

complex and may be composed of interconnected queues or

networks of queues. Queues configured in networks, in which

each queue has an arrival rate λ and a service rate µ, are a

natural generalization for various systems of practical interest.

The main interest in this article is to efficiently solve

a mixed-integer optimization problem in networks of

M/G/1/K queues. In Kendall notation, M/G/1/K repre-

sents a queue with independent and identically exponentially

(Markovian) distributed times between the arrivals, a single

server with generally and independently distributed service

times, and a total capacity of K customers including the

customer in service. We have shown an example of a network

of queues in Figure 1.

The discussion of queueing systems is usually associated

with the classic queues in people’s daily lives. Some processes
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Fig. 1. An example of complex queueing network adapted from [1].

can also be modeled as queueing systems; however, they

are not noticeable in our daily routine. The investigation of

the performance of queuing networks is closely linked with

specific measures of queue performance. Several performance

measures may be of practical interest in investigating per-

formance in queueing networks. Many studies address the

throughput θ as the measure of paramount interest. Achieving

high throughput values leads to a high-performance queueing

network. However, achieving high throughput values on a

network requires a significant increase in resource consump-

tion. As a result, a significant increase occurs in the costs

of the queueing system. Therefore, a usual proposal is the

maximization of throughput combined with the minimization

of the overall service allocation
∑

µi and the total capacity

allocation of the system
∑

Ki.

A new proposition to investigate the performance of a

queueing network was discussed in [2] in which the usual goal

of maximizing the throughput is replaced by the minimization

of the sum of the blocking probabilities while preserving

in the formulation the usual objectives associated with the

resources (i.e., the overall service allocation
∑

µi, and the

total system capacity allocation
∑

Ki). In such a proposition,

the individualized effect of each queue on generating blockage

of customers is considered. Thus, an internal system analysis is

the way of reaching an overall improvement of the system. The

objective is to provide low blocking probabilities across the

queueing network, to increase the flow along with the system,

and to improve the performance of the queueing network.

For a finite queue with a total capacity K, the probability

that a customer will reach this queue and find precisely K
customers is denoted by PK , which is usually called blocking

probability. The excessive occurrence of blockages reduces the

overall performance of the queueing network and, therefore,

high probabilities of blocking result in low efficiency of the

queueing network [3].

A proposal for post-processing solutions based on solutions

obtained from known efficient algorithms was presented in [4],
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which has found refined improvements in previous solutions.

Also this study used the formulation of maximization of

throughput while minimizing the overall service allocation
∑

µi and the total system capacity allocation
∑

Ki. The

target was to develop algorithms to redistribute capacity areas

across the queueing network while preserving the full capacity

previously allocated to the queueing network. Through this

proposal, it was possible to increase the throughput.

Another post-processing proposal based on the sum of

the blocking probabilities was described in [2]. Here we

address again the formulation introduced by [2] but with

some novelties including a more detailed presentation of

the formulation and also a comprehensive investigation of

the structure of the solutions obtained through an heuristic

method to simultaneously minimize the sum of the blocking

probabilities (
∑

i PKi
) in an acyclic network of M/G/1/K

queues. In addition, this article introduces well-known metrics

specially adapted to the evaluation of the improvements in the

solutions obtained by the post-processing technique developed

in [2].

There is a critical trade-off for this formulation (minimiza-

tion of the blocking probabilities, overall service rates
∑

µi,

and the total capacity of the system
∑

Ki). Notice that the

greater the buffer allocation and the service rates are in the

system, the less the blocking probabilities for each queue are.

However, the increase in the capacity and the service rates is

highly costly. Thus, the objective here is to develop algorithms

to minimize these expensive resources while simultaneously

reducing the blocking probabilities.

The optimization approach seen in [2] produced Pareto-

optimal solutions for more than one objective in the multi-

objective function. However, the authors provided no critical

evaluation of the behavior of these solutions before and

after post-processing. They used no metrics to verify possible

improvements through post-processing. The guarantee of im-

provements, through well-established metrics, can contribute

to the decision-making agent opting for the use of the post-

processing technique.

This study presents the contribution of a more detailed

investigation of the proposition in [2]. In addition, we offer

a more an extensive set of computational experiments and

the inclusion of performance evaluation metrics for multi-

objective algorithms to confirm the proposal’s suitability.

This remaining of this article is organized as follows.

Section II briefly describes the literature of the area. Sec-

tion III presents the methodological aspects of this study: the

problem formulation in terms of a mathematical programming

model, the multi-objective methodology, and the proposed

post-processing approach based on particle swarm optimiza-

tion. Section IV presents the simulation results for several

basic settings. Section V completes the article with conclusions

and possible themes for future research in this area.

II. BRIEF LITERATURE REVIEW

Many researchers are potential users of general single-

server finite queueing network optimization. The importance

of optimization problems in queueing networks stems from

the possibility of providing improvements in several systems.

Investigations in this direction reveal the possibility of under-

standing and improving several systems, including production

line modeling [5], [6], industrial processes [7], [8], production

systems [9], health systems [10], [11], traffic of vehicles and

pedestrians [12]±[14], computer and communication systems

[15]±[18], web-based applications with tiered configurations

[19] with QoS requirements defined in terms of response time,

throughput, availability, and security [20], among others.

This study’s queueing network optimization problem is

addressed through nature-inspired heuristic algorithms. Here,

the multi-objective genetic algorithm (MOGA) (proposed by

[21]), combined with a multi-objective particle swarm op-

timization algorithm (MOPSO) (proposed by [2]) are used.

These optimization algorithms perform an approximate global

search based on knowledge of several points in the search

space [22], [23]. It is well known that these algorithms can be

suitable for many multi-objective problems with complicated

objective functions and constraints [24]±[29].

III. THE METHODOLOGY

The interest here is the discussion of mathematical formula-

tions for the performance optimization problem of a network

of general finite single-server queues and the adaptation of

algorithms to efficiently optimize such queueing networks.

Several algorithms have been proposed to solve this problem,

which is strongly dependent on the mathematical programming

formulation used.

There are classic single-objective formulations in the litera-

ture: buffer allocation problem (BAP) [1], [3], server allocation

problem (CAP) [30]±[32], and buffer and server allocation

problem (BCAP) [33]. As a result of these formulations,

multi-objective formulations propositions also emerged [2],

[4], [21]. Particularly this study addresses the problem through

the multi-objective formulation presented in [2].

A. Multi-objective Formulation

The optimization problem in queueing network may be

defined on a digraph D(V,A) in which V is a finite set of

m vertices (queues), and A is a finite set of arcs (connections

between the queues).

The following multi-objective mathematical programming

formulation is another possible way to formulate the optimiza-

tion problems of M/G/1/K networks (see [4], [21]):

minimizeF (K,µ) =
[

f1(K), f2(µ), f3(K,µ)
]

, (1a)

subject to:

Ki ∈ N, ∀i ∈ {1, 2, . . . ,m},
µi ⩾ 0, ∀i ∈ {1, 2, . . . ,m},

(1b)

which comprises the minimization of capacities and service

rates, simultaneously with maximization of throughput. Then,

f1(K) =
∑m

i=1 Ki represents the total capacities, f2(µ) =
∑m

i=1 µi represents the overall service rates, and f3(K,µ) =
−Θ(K,µ) represents the throughput. The minus sign in the

throughput is because this objective is to be maximized.
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Notice that it is usual in the literature of the area to

model the throughput as a constraint but this approach has an

important drawback because the throughput constraint usually

must be relaxed and it is not easy to define a suitable threshold.

Various possible formulations have been described in the

literature for the optimization problem based on the throughput

of the system, (Θ) [3], [4], [21], [33]±[40]. Here, a math-

ematical formulation for optimization is presented, focusing

on the blocking probabilities of the queueing system [2],

which prioritizes the minimization of the sum of the blocking

probabilities in the system. Notice that the minimization of the

total capacity allocation and the overall service allocation is

also sought. Behind this choice is the idea of a more intuitive

nature of blocking probability. The prioritization to minimize

the blocking probability values ensures a greater degree of

decoupling between the different queues of the network. That

is to say, the queues will suffer less interlocking under low

blocking probabilities.

B. Performance Evaluation

The Generalized Expansion Method (GEM) (see [41]) is

quite efficient for estimating the blocking probability PK in

single M/G/1/K queues. GEM is a computationally efficient

and accurate method based on a two-moment approximation

[42]:

PK =
ρ

(

2+
√

ρs2−
√

ρ+2(K−1)

2+
√

ρs2−
√

ρ

)

(ρ− 1)

ρ

(

2
2+

√
ρs2−

√
ρ+(K−1)

2+
√

ρs2−
√

ρ

)

− 1

, (2)

in which ρ < 1 is a constraint that must be guaranteed.

The system utilization ρ is defined as the ratio between

the total arrival rate and the service rate, ρ = λ/µ, and

s2 = Var(Ts)/E
2(Ts) is the squared coefficient of variation

of the service time (Ts). The approximation of PK is shown

to be accurate by previous studies for a wide range of values

[1], [3], [43].

Additionally, in single queues, a fraction PK of the arrivals

cannot join the system. Then, PK represents the probability

that a customer arrives when there is no more waiting space.

Therefore, only the fraction (1 − PK) of the arrivals can

be served by the queue [44], resulting in a throughput of

λ(1 − PK). Then, the throughput of this single queue is the

fraction of customers, arriving at a rate of λ, who did not find

the system blocked, and this throughput may be considered

approximately Markovian (see [1]).

Accurate estimates for the performance measures of ar-

bitrarily configured, finite queueing, acyclic networks have

been successfully obtained by GEM, which is a repeated-trial

method. GEM considers the delay effect generated by several

possible blockages occurring in the flow of customers along

with the queueing network. Employing an iterative procedure,

GEM solves a set of simultaneous nonlinear equations leading

to considerable improvement in the precision of the estimation

of the performance measures of the queueing network. The

method may be seen as a combination of node-by-node de-

composition and repeated trials. Thus, each queue is analyzed

separately, and corrections are made to account for interrelated

effects between network queues.

GEM is described in great detail in [45], in which is

mentioned that the method creates, for each finite node j, an

auxiliary vertex (hj) that is modeled as an M/G/∞ queue

(see Fig. 2). For each entity placed in the system, vertex j
may be blocked (with probability PKj

) or may be unblocked

(with probability 1−PKj
). When blocking occurs, the entities

are rerouted to vertex hj and are delayed while node j is busy.

Vertex hj records the time that an entity has to wait, with

a service rate µ′
h, given by GEM, before entering vertex j,

and updates accordingly the effective arrival rate coming from

vertex i to vertex j, λeff = λi(1− PKi
).
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Fig. 2. Generalized expansion method for a tandem network.

The goal of GEM is to provide updates of the service rates

of the nodes as follows:
µ̃−1
i = µ−1

i + PKj (µ
′
h)

−1, (3)

in such a way that from Eq. (3) services rates µi can be

updated for all nodes along ρ and consequently PK , from

Eq. (2).

GEM iteratively calculates updates of the system perfor-

mance measures taking into account the delay effect generated

by several possible blockages in the flow of customers in the

queues. In this article, the throughput (Θ) is not considered

its optimization objective. Instead, the sum of the blocking

probabilities in each queue is considered. Notice that the

computation of PK , even though the approximation proposed

in Eq. (2), is dependent on the knowledge of the queue arrival

rate, λ. For the initial queue of a network (see Fig. 1), the

arrival rate, λ, is known, but not for the subsequent queues.

In some articles, the procedure applied to obtain these arrival

rates considers approximations produced through the use of

GEM.

The blocking probability PKi
is calculated by GEM [41],

and is dependent on λi, µi, and Ki. The µi and Ki values are

decision variables of the optimization problem, but the arrival

rate λi depends on the previous queue’s throughput. For the

sake of argument, consider a tandem queueing network, in

which the computations performed assume that the arrival rate

on the ith queue is dependent on the previous (i−1)th queue,

given by:

λi = λi−1(1− PKi−1), (4)

in which i ∈ {2, . . . ,m} and λ1 is the external queueing

network arrival, λ1 = Λ.

C. Multi-objective Approach

The optimization problem presented by Eq. (1a) and (1b)

will be solved by an adapted multi-objective evolutionary
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algorithm (MOEA). Generally speaking, an MOEA may be

seen as an optimization algorithm that approximately performs

global searches [22]. The application of the genetic operators

of mutation, crossover, selection, and elitism ensure that the

population converges to a mutually non-dominated approxi-

mation set of the Pareto front. In this article, the MOEA is

the elitist non-dominated sorting genetic (NSGA-II) algorithm.

Further details about this algorithm for the queueing network

optimization problem are in [4].

A multi-objective particle swarm optimization (MOPSO)

algorithm is applied after the NSGA-II optimization to im-

prove its solutions. Given the mathematical programming

formulation that has been proposed here, the convergence of

NSGA-II can be enhanced by a post-processing algorithm like

a MOPSO. The proposed MOPSO extends the single-objective

PSO algorithm from [46].

Each possible solution for the resource allocation (capacities

and service rates) is represented by a particle that aims to

optimize the queueing network under study. Each particle

in the proposed formulation can be represented by variables

(x1, . . . , xℓ) = (K1,K2, . . . ,Km, µ1, µ2, . . . , µm), with ℓ =
2m.

Notice that the multi-objective optimization problem ad-

dressed here is a mixed-integer problem. Because of that,

we must define a particle repair strategy. Indeed, changes to

capacities are performed, and then integer values are used, as

Ki ⩾ 1 must always be respected. Similarly, the restrictions

associated with service rates are also appreciated because it

is necessary to guarantee that ρ < 1. The queue arrival

rate must be strictly less than the service rate µ. Then the

feasibility of the investigated solutions is guaranteed. Each

particle 1 ⩽ i ⩽ s has the following attributes, considering

that s denotes the size of the swarm (population of particles):

• Position, xi = (xi,1, xi,2, . . . , xi,ℓ);
• Velocity, vi = (vi,1, vi,2, . . . , vi,ℓ);
• Personal best position, pi;
• Global best position, gi.

The proposed MOPSO approach for the optimization of the

queueing network is presented as the pseudo-code shown in

Algorithm 1:

Eq. (5) and (6) are responsible for the update of the speed

and position of the particles, respectively:

vt+1
i = wt + r1

(

pi − xt
i

)

+ r2
(

gi − xt
i

)

, (5)

xt+1
i = xt

i + vt+1
i ; (6)

Eq. (7) is responsible for the update of the position for the

integer variables:

xt+1
i = int

(

xt
i + vt+1

i

)

; (7)

The parameters and their values were defined as follows: r1
and r2 are positive random numbers with uniform distribution

belonging to the interval [0, 1.0], w = 0.4 is the inertia weight.

The literature presents several details about the implemen-

tation of MOPSO algorithms. The MOPSO just described it

is an adaptation of the classical implementation described by

[47], and simplified versions are found in [48], and more

sophisticated and improved versions in [49] and in [50],

Algorithm 1: Multi-objective Particle Swarm Algo-

rithm
/* generate initial swarm */
X ← GenInitSwarm(swarmSize)
P ← X

/* find non-dominated fronts F = (F1,F2, . . . ) */
F ← NonDominSort(X)
g ← Random(F)
/* move swarm */
for t = 0; t < numIter, t++ do

for i = 0; i < swarmSize; i++ do
vt+1

i
← Speed(xt

i, pi, g)
xt+1

i
← NewPosition(xt

i, vi)
if xt+1

i
dominates pi then

pi ← xt+1

i

else
if pi dominates xt+1

i
then

pi ← pi
else

pi ← Random(xt+1

i
, pi)

end if
end if

end for
F ← NonDominSort(X)
g ← Random(F)

end for
write F

which includes the mixed-integer mathematical programming

formulations [51].

IV. RESULTS

The post-processing code (multi-objective particle swarm

optimization) was implemented in FORTRAN to use previous

implementations of NSGA-II [21] and GEM [41]. All codes

are available to authors upon request and should be used for

educational and research purposes. We conducted the execu-

tion of the computational experiments on Intel(R) Core(TM)

i3-2310M 2.10 GHz running Windows 10 Pro 64 bits, with

6.00GB of RAM.

According to previously reported studies [21], the best

parameter group for NSGA-II is the combined use of the

simulated binary crossover (SBX) and mutation, a mutation

rate of 2%, 400 individuals seemed to be sufficient, the

dispersion parameter should be approximately 8, and we set

the maximum number of generations numGen to 4000 (this

ensure a finite computation time). For MOPSO, the swarm

size was set to 400 (equal to the number of individuals in

the NSGA-II), and the maximum number of iterations of the

algorithm was set to 4, 000. The parameters were defined as

follows: r1 and r2 are positive random numbers with uniform

distribution belonging to the interval [0, 1.0], w = 0.4 is the

inertia weight.

With the parameters set for the NSGA-II and MOPSO

algorithms, computational experiments were conducted for

queues networks in the topologies: series, split, and merge, and

the generic mixed topology adapted from [1], as illustrated in

Fig. 3.

For each topology under study, we analyzed three different

values for the square coefficients of variation in service
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Fig. 3. Topologies tested, series, split, merge, and mixed topologies.

times, s2 ∈ {0.5, 1.0, 1.5}, to characterize systems that are

hypo-exponential, exponential (markovian), hyperexponential,

respectively. A single entry is considered in the queueing

network for all topologies, with λ = 5.0. In the investiga-

tions presented here, the routing vector in the split nodes is

considered to be known, with equal probabilities. The routing

probabilities in Figure 3(b) and Figure 3(d) are represented

by (p1, p2) and (p1, p2, p3, p4), respectively. The specific case

of optimizing routing probabilities to achieve a particular

objective (for example, to maximize throughput) is the goal

of other studies (see [40] for instance).

The main objective of the proposed post-processing is to

readapt the allocation of resources to the queueing network. It

is not an objective to ensure that every post-processed solution

dominates the previous solution obtained by NSGA-II. In some

cases, the solution does not dominate, nor is it dominated, i.e.,

it is a new solution distinct from the previous one concerning

the allocation of resources.

Among all solutions, a named solution (a) provided by

NSGA-II, after being post-processed by MOPSO, provides

a solution denominated (a∗). There is some possibility that

the solution (a∗) coincides with some solution (b) provided

by NSGA-II but is distinct from solution (a). In practice,

it would be a different solution. However, it is essential

to observe the proportion of repeated solutions between the

NSGA-II solutions and the post-processed solutions to verify

this possibility. Table I represents the proportion of really new

solutions generated through the post-processing technique.

Table I shows that the post-processing strategy used pro-

vides a significant proportion of new solutions. However, at

this moment, it is only possible to ensure that the solutions

provided are new. It is still impossible to ensure that such

solutions are effectively better than the previous ones. It is

TABLE I
PROPORTION OF NEW SOLUTIONS BY MOPSO POST-PROCESSING.

s2
Topology

serie split merge mixed

0.5 0.8500 0.8450 0.8550 0.8125
1.0 0.8350 0.8475 0.8675 0.7725
1.5 0.8750 0.8550 0.8700 0.8100

possible to guarantee that the previous ones do not dominate

such solutions. On the other hand, it is impossible to guarantee

that such solutions dominate the previous ones. By dominance

criteria, many of these solutions are at an equal level. For

that, decision-making would be up to the queueing network

manager. Figs. 4, 5, 6, and 7 present the results obtained for

all squared coefficients of variation tested, examining in detail

the solutions for all topologies. These figures show the 3-d

surface (
∑

Ki ×
∑

µi ×
∑

PKi
) provided by NSGA-II and

the post-processed surface by MOPSO.
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Fig. 4. Results for the series topology: (a), (b), (c), surfaces draw, solutions
initially provided by the NSGA-II; (d), (e), (f), surfaces draw, solutions that
have been improved by the MOPSO.
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Fig. 5. Results for the split topology: (a), (b), (c), surfaces draw, solutions
initially provided by the NSGA-II; (d), (e), (f), surfaces draw, solutions that
have been improved by the MOPSO.

Table I and Figs. 4, 5, 6, and 7, inform those post-processed

solutions are promising. However, decision-making, with this

information alone, is still dubious. A reduction in the number

of buffers is a reduction in total cost. However, if a reduction

in buffers occurs simultaneously with some increase in service

rates, will this new solution be adequate or less adequate (from

an economic point of view)? In several real-life problems, the

answer to this question is directly linked to costs.
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Fig. 6. Results for the merge topology: (a), (b), (c), surfaces draw, solutions
initially provided by the NSGA-II; (d), (e), (f), surfaces draw, solutions that
have been improved by the MOPSO.
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Fig. 7. Results for the mixed topology: (a), (b), (c), surfaces draw, solutions
initially provided by the NSGA-II; (d), (e), (f), surfaces draw, solutions that
have been improved by the MOPSO.

A. Performance Evaluation

The performance of multi-objective optimization algorithms

is often assessed using diversity indicators. The interest is to

measure the quality of the spread of solutions obtained by the

algorithm used [52]. The best solution proposal tends to be

the greatest spread but with the most uniform possible spacing

between solutions.

A comparative analysis between the solutions provided

by NSGA-II and the solutions subsequently post-processed

by MOPSO needs adequate metrics for comparing multi-

objective solution sets. The ∆ metric was introduced in [53],

∆ = 1
|S|−1

∑|S|−1
i=1 |di − d̄|, in which di is the Euclidean

distance between consecutive elements belonging to the Pareto

front S. A Pareto-set is better to spread when the value of

the ∆ metric is lower. In other words, a smaller value of ∆
implies more diversified solutions. Fig. 8 presents the results

of the ∆ metric for the solutions provided by NSGA-II and

the solutions subsequently post-processed by MOPSO.
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Fig. 8. Evolution of ∆ metric for hypo-exponential, Markovian, and hyper-
exponential queueing networks.

Four different topologies were evaluated, with three values

for the square of the coefficient of variation. Thus, there

are 12 different configurations under study. For 6 of these

configurations, the Pareto front obtained after post-processing

showed greater diversity. This fact shows a balance with the

previous solutions provided by the NSGA-II algorithm. The

behavior of post-processed solutions was superior in variety

for systems with hypo-exponential service. In this situation,

the post-processed solutions for the merge topology did not

show greater diversity. The solutions in Markovian systems,

using the NSGA-II algorithm, did not show greater diversity

only for the split topology. There is a balance between

solutions for hyperexponential service, with superiority for

post-processed solutions in the split and mixed topologies.

Post-processed solutions showed greater diversity whenever

there was no Markovian service for the most complex (mixed)

topology among those evaluated. Objectively, we notice an

oscillation in the spreading levels in the Pareto-front, but with

similar results between NSGA-II and NSGA-II post-processed

by MOPSO. The differences in spreading are just stochastic

fluctuations and are not indicative of effective improvement or

worsening due to post-processing.

Another comparison strategy may be to consider the hy-

pervolume metric (HV ) [54]. The hypervolume measures the

volume of the space dominated by the Pareto front. The

hypervolume evaluates both the coverage and the diversity of

the solutions. The hypervolume between the Pareto front and

the origin in the objective space will be considered for this

investigation. Thus, the superior Pareto front has the smallest

verified hypervolume. The hypervolume metric used is defined

by:

HV (S) = volume





|S|
⋃

i=1

vi





where S is the Pareto front generated by the algorithm, vi is

the hypercube formed by the solution si ∈ S and the origin

of the objective space.
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Fig. 9. Evolution of HV metric for hypo-exponential, Markovian, and
hyperexponential queueing networks.

In Fig. 9, the Pareto front obtained by the post-processing

strategy was better in all evaluated configurations. Unlike ver-

ified for the ∆ metric, this fact shows that the post-processing

through the MOPSO algorithm provides an effective gain in

the solutions previously offered by the NSGA-II algorithm.

V. CONCLUSIONS AND FINAL REMARKS

This article discusses an alternative form of mathemati-

cal formulation for the multi-objective optimization problem.

The sum of blocking probabilities in the queueing network
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is adopted as a minimization objective. Thus, there is a

reduction of blockages in the queueing network flow, and

general performance is improved. We minimized the sum of

the blocking probabilities of a general-service time, single-

server, finite, acyclic queueing network along with the total

capacity and the overall service rate. The main objective of

this article was to evaluate algorithms for post-processing

solutions. We obtained previous solutions from efficient known

multi-objective evolutionary algorithms of a finite general-

service acyclic queueing network.

The performance evaluation shows that the post-processing

strategy through multi-objective particle swarm optimization

is promising because it can improve the hypervolume of the

Pareto front previously obtained. The computational results

presented confirm that the evolutionary algorithm produces

very effective sub-optimal solutions to the problem. However,

the previous Pareto front could be significantly improved by

a post-processing strategy with a reasonable amount of extra

computational effort.

The improvement on the Pareto front occurred in some situ-

ations in the evaluation by indicator ∆. Besides, improvements

are observed in all cases assessed for the hypervolume metric,

independently of the topology. The proposed post-processing

strategy appeared to be appropriate for the stochastic optimiza-

tion problem under consideration, and it might also be suitable

for other similar optimization problems.

Topics for future research in this area include consider-

ing different types of queues, such as multi-server Marko-

vian queues, M/M/c, finite multi-server Markovian queues,

M/M/c/K, and so on.
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