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Determination of Angular Status and Dimensional
Properties of Objects for Grasping with Robot Arm

Kürşad Uçar and Hasan Erdinç Koçer

Abstract—In any task, robot arms can work more efficiently
without human control. With components such as imaging
devices, it is possible to program robots to control autonomously.
In this study, the calculation of object size and orientation in
2D images was carried out to grasp moving objects with the
robot arm. Deep learning-based You Look Only Once (YOLO)
recognizes objects moving at unknown speeds on a conveyor belt.
Since YOLO does not produce any output about the orientation
of objects, we eliminated this deficiency for horizontal objects
using YOLO with Principal Component Analysis. For vertical
objects, length calculations were made using two images. Then,
the velocity, which is the most important property of moving
objects, is calculated with template matching. Finally, the robot
arm is controlled in the three parts to calculate the angles
required for the grip. While two links (one joint)’s angles are
calculated with simple image processing, one link is controlled
by an Artificial Neural Network as a 3 degree of freedom planar
robot arm. According to the obtained speed, the robot arm waits
for the object to arrive and then, being held by the grip. In the
trials, the robot arm achieved a successful grip of 94.86% and
91.43% for vertical and horizontal objects respectively.

Index Terms—Learning and Adaptive Systems, Grasping,
Kinematics, Recognition.

I. INTRODUCTION

Autonomous robot systems have a great demand in recent
years in many application areas, such as harvesting [1],

garbage separation [2], and urban search and rescue [3].
They attract researchers due to the advantages of working in
environments where people cannot work or are tirelessly and
sensitively demanding. Serial robots are one of the frequently
preferred autonomous systems in recent years. They can nat-
urally imitate human arm movements which is very beneficial
for the industry. Despite the advantages mentioned above,
they are complex systems that combine data acquisition,
image processing, classification tasks, and electronic control.
However, the most common problems related to a robot arm
can be summarized as follows:

1) The size and shape of target objects and their positions
vary according to the application field. This situation makes
it difficult to detect and grasp them for robot arms.

2) Some applications ask robot arms to capture moving
targets. Different moving speeds and complex backgrounds
are also vexed issues.

3) The system needs to work stably to meet requirements
such as speed and accuracy for tasks based on target recogni-
tion, grasping, and classification.
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Under these problems, robot operation seems to be limited
in comparison to human [4] but it has been an important re-
search topic. Generally, robot arms are automated to serve un-
der created stable environmental conditions [4], [5]. However,
robot arms are designed to perform smoothly in real-world
environments. Changing environmental conditions have been
a crucial factor in robot automation. In such difficult situations,
the biggest helpers of robots are undoubtedly sensors and
cameras. Such devices can provide sufficient information about
the circumstances for grasping tasks. However, raw data means
nothing to the robot arm. Therefore, the obtained images or
sensor data should be made meaningful. The first noteworthy
knowledge is to recognize objects in such tasks. The matter
can be in different conditions in a real-world problem. It
may even be necessary to grasp them from among a group.
In a complex environment, it must be known which objects
to grasp. In such cases, it is not desirable for the robotic
manipulators and algorithms to deal with everything in the
working place. So recognizing the relevant object, obtaining
its position, and separating it from others are significant
steps. Deep learning-based algorithms such as You Only Look
Once (YOLO) [6], Single Shot MultiBox Detector (SSD) [7],
and Faster Region-Based Convolutional Neural Networks (R-
CNN) [8] are available for object recognition and positioning
in the recent studies. These algorithms can work in real-time
applications because they detect objects with high accuracy
and speed [9], [10]. In addition, deep learning provides an
opportunity to recognize objects without being affected by
distortions in the images. After detecting the objects to be
grasped, some variables of interest such as their position and
size, grasping point must be obtained correctly.

Image processing algorithms make it easy to do all the
mentioned operations. Various approaches have been made to
grasp stationary objects by processing this information [4],
[5], [11]–[13]. However, when manipulators are required to
perform in real world conditions, it is not enough to only grasp
fixed objects because objects can move at different speeds,
which must be taken into account by the robot at any time [14].
Grasping moving objects can only be possible by predicting
their movements, where discovering speed plays a critical role
in this task. Since moving objects do not have a fixed position,
the object stays in the robot arm’s working area for a limited
time [14], [15]. For these reasons, the problem of performing
all operations in real-time is challenging.

In this study, an image processing and artificial intelligence-
based solution to grasping problem in movement is presented.
We created a setup as in Fig. 1 by mainly focusing on the
following:
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Fig. 1. Experimental setup.

1) We separated robot targets in a complex environment.
2) Target velocity was not given as input. We determined it

with image processing. The grip was carried out at different
speeds.

3) By using objects with different structural properties,
grasping was achieved without being affected by the shapes
of the objects.

4) Regardless of whether the objects were vertical or
horizontal, all operations have been successfully executed.

Objects move on the conveyor by either standing vertically
or horizontally in random placements (position, direction, etc.)
on the conveyor along with other things that are not wanted to
be grasped. The orientation of these objects is significant for
grasping horizontal objects. Although YOLO is very success-
ful in object detection, it does not provide information about
the orientation of objects. On the other hand, the Principal
Components Analysis (PCA) can calculate the orientations
of every object that can be separated from the background
[16], but it does not make object classification. By combining
these two methods, we have achieved both rapid detection
and finding the orientation of objects that is important for
grasping. So we used PCA with YOLO to calculate the
object orientation of interest. Although vertical objects have
no orientation, image processing methods are used to calculate
the length of different-size objects in vertical position. The
height of the objects were calculated by making mathematical
calculations on the same object detected in both side and top
images. Because the study aims to realize grasping at different
speeds without knowing the speed, correctly calculating the
height of objects is very important for calculating velocity
using template matching in the next step. After the operations,
the manipulator was positioned according to the position,
speed, and object direction (vertical, horizontal) information.
To control the robot arm quickly, it was divided into three parts
and therefore, we eliminated the need for complex inverse
kinematic calculations. Two of these parts consist of a single
joint. The third part was controlled as a 3 degree of freedom
(dof) planar robot using an Artificial Neural Network (ANN)
to get fast results.

The rest of the paper is as follows. Previous works are
described in Section 2. The methods are explained in Section
3. Trials are mentioned in Section 4. The results are given in
Section 5. And the conclusion is presented in Section 6.

II. RELATED WORKS

In the pioneering work on grasping moving objects, imaging
system was examined [17]. A grasping strategy was applied

by simulating human arm movements. The algorithm realized
toy train grasping.

In the industry where robot arms are frequently used, con-
veyor belts are widely used for moving objects. It is possible
to pick up moving objects on the conveyor belt with a vacuum
gripper without difficulty. In [18], four different objects on the
conveyor belt were also separated with a vacuum gripper using
a 3D camera.

Image processing algorithms can distinguish objects based
on their representative features, such as shape and color. In
[19], the color of the object was detected with an infrared
sensor placed next to a conveyor belt. The position of the
sensor and gripper and the speed of the conveyor were
constant. For this reason, the time elapsed until the moment
of grasping after the sensor detected an object was simply
calculated. At the end of this period, the grasper reached the
object according to its color.

Objects can have different colors and different shapes. In
[20], the colors, shapes, and positions of some objects were
obtained by image processing for a separation task.

Various objects and environments create complex scenes in
images, making them difficult to distinguish. In such cases,
deep learning plays a key role in distinguishing them. In
[2], deep learning was used for object recognition and pose
estimation. They recognized the plastic bottles moving on the
conveyor belt in complex scenes and grasped them with the
manipulator.

The movement made by the robot arm to grasp the objects
moving on the conveyor belt is similar to each other. Using this
similarity, they presented constant-time motion algorithms in
[14] based on the use of similar paths to grasp different objects
moving on the conveyor belt. They have shown that their
algorithm is highly effective in performing similar repetitive
tasks.

Objects can also move without the conveyor belt. Objects
can move in fixed and unstable routes, on the ground, or in
the air. In [21], Kim et al. presented an approach for captur-
ing thrown objects with a robotic arm. The system learned
object flight dynamics by observing flying object samples.
The grasping distributions of each object were learned by
human demonstration. The system tried to find the appropriate
catching motion by searching an accessible area for trajectory
intersection of the launched object. The proposed approach
allows the robot to take advantage of potential grips on any
part of the object, regardless of the direction of motion,
and reach trajectories that are constantly replanned to grasp
while avoiding self-movement. They also utilized a learning-
based grasping planner that could be generalized from a small
number of samples to new objects with unseen shapes.

In [22], a search-based kinodynamic motion planning al-
gorithm is presented. It can carefully select the object at the
earliest possible point in its trajectory and takes into account
time to create trajectories for both the arm and the end effector.
The proposed approach tried to produce solutions against
the high dimensionality of the time parameter kinodynamic
planning problem by using informative heuristics and adaptive
dynamic motion primitives. In [23], Marturi et al. created a set
of offline trajectories for tracking and grasping selected objects
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and then, random moving ones. They made iterative inverse
kinematics calculations with exposure tracking. Considering
the collisions and kinematic constraints, the coupling trajectory
with the smallest mission field error was selected, and achieved
successfully.

In [24], a singularity-robust dual quad-based visual servo
integrated with an efficient grasping algorithm is presented
to grasp randomly moving objects in the robot’s task area.
The proposed system simultaneously analyzed the quality of
multiple clutch configurations and their distance from the
gripper in real-time. The object path was planed inside joint
limits.

In [25], an aerial manipulator system is presented for grasp-
ing moving objects. They proposed a control strategy based
on separate control of the unmanned aerial vehicle (UAV) and
a manipulator. Experimental trials showed that moving objects
can be grasped with an aircraft. In another UAV gripping
study [26], a new passive manipulator was integrated on an
autonomous drone to capture a moving target. In their work,
they aimed to separate the moving target from a flying UAV. In
[15], the authors provided a deep reinforcement learning-based
control for a manipulator by recognizing randomly moving
objects with YOLO. By keeping the relative position between
the gripper and the moving object position stable, they adjusted
the reward function. Thus performing the approach-tracking-
grasping integrated operation for the moving objects.

III. METHODS

To grasp the moving objects, firstly, YOLO detected objects
moving on the conveyor. If the object was vertical, its height
was calculated by image processing. When the object was
horizontal, its orientation on the conveyor was found by PCA.
Template matching was used to calculate the speed of the
objects. Finally, the robot arm was positioned for gripping.
Details of the methods are given in this section.

A. Object Recognition with YOLO

The process needs to be executed quickly for the smooth ex-
ecution of real-time applications. Since deep network requires
high processing power, deep learning models run slowly. For
this reason, it is significant to fast and correct classification in
object detection tasks. YOLO can directly give classification
results and location coordinates of class members, which is
very suitable for real-time object tracking applications [27].
YOLO also offers a trade-off between speed and accuracy.

Depending on the object’s orientation and camera’s position,
object appears differently in 2D cameras. For example, a
standing upright glass looks like a circle on top images but
looks like a glass when viewed from the side. Since object
recognition is difficult under these conditions, three different
YOLO were trained to detect horizontally and vertically ob-
jects. These three networks were trained according to various
images and properties of objects. Imaging was carried out
with 2D cameras with a resolution of 480 pixel x 360 pixel.
Top images of horizontal objects were used as the training
data for the first deep network. The second deep network was
trained with side images of vertical objects. And the third deep

Fig. 2. Object detection system.

network was trained to recognize vertical objects in images
taken from the top.

Fig. 2 visualizes the object detection system. Firstly, a frame
is taken from the top, and it is evaluated whether there is
a horizontal object with first YOLO. If it is the case, the
necessary process for gripping is to start without running other
networks. If the first deep network cannot detect a horizontal
object, a frame is taken from the side, and it is evaluated
whether there is a vertical one. If the vertical object is also
not found, the system returns to the beginning, and this process
is repeated until the object is detected. The third deep network
is operated only when a vertical object is detected after taking
a side view.

B. Calculation of the Height of Vertical Objects

Due to the height differences of objects, as in Fig. 3, tall
objects travel less distance than shorter objects in the top
images. The distance these objects must travel is the same as
the number of pixels of the camera in that direction. In other
words, the two lines in Fig. 3 are shown with the same pixel
number in the image. For this reason, even if the objects move
at the same speed, they appear to move at different speeds in
the images because the distance they will travel in images is
not equal. Therefore, we must know the height of the object
correctly to overcome this problem. We offered to calculate the
object height by processing the images taken from the side.
However, the height can be seen differently depending on the
distance from the camera. For this reason, it was necessary to
find the space of the object from the camera.

To find the height of vertical objects, first, the object is
searched with the deep network in top images. The approxi-
mate distance from the point where the object is detected to
the edge of the conveyor belt is called DisApp(p) (where (p)

denotes the height in pixels) as shown in Fig. 4(a). It can be
also provided an approximation of the height of the objects
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Fig. 3. From side view, the tip of higher objects travel shorter
distances (red line) than shorter objects in longer distances (yellow
line)

(a) DisApp(p)

(b) HeiApp(p)

Fig. 4. Position and height of the object.

with the second deep network. The height of the object in
pixels HeiApp(p) is shown in Fig. 4(b). HeiApp(p) is in the
side view as the upper limit of the box drawn by the second
YOLO and is calculated as in Equation (1);

HeiApp(p) = 480−BoxTopY(p) (1)

where 480 and BoxTopY(p) are the number of camera pixels
and the upper bound of the box drawn by YOLO in pixels,
respectively. To calculate the approximate height HeiApp(cm),
the Equation (2) was used according to the Fig. 5:

HeiApp(cm) =
HeiApp(p).(65 + 30.(DisApp(p)/480))

480.65
(2)

To calculate the distance CamDisY seen by the camera at
the approximate height of the object in Fig. 6, the similarity
of triangles for the top camera is used as in Equation (3):

CamDisY(cm) =
30.(72−HeiApp(cm))

72
(3)

where 30, 72 and, HeiApp are the length seen by the camera
on the conveyor belt and the height of the camera from the
conveyor belt, respectively.

Since the distance from the camera to the object tip is
known, the actual distance of the object to the edge of the

Fig. 5. Similarity of triangles used to find the approximate height of
objects.

Fig. 6. The distance (black line) that the top camera sees at the
approximate height of the object (CamDisY)

conveyor belt, RealDis(cm), can be calculated as in Equation
(4):

RealDis(cm) =


L+

30− CamDisY

2
,

if DisApp ≤ 240

30− L− 30− CamDisY

2
,

Otherwise

(4)

where L = CamDisY.DisApp/480. Using real distance RealDis,
the real height of the objects RealHei(cm) can be calculated as
in Equation (5):

RealHei(cm) =
HeiApp(p).(29.(65 +RealDis(cm)))

480.65
(5)

C. Direction Calculation with Principal Component Analysis

PCA is a very effective method for revealing necessary
information from data. PCA finds the projection of data in
multidimensional space to a lower-dimensional space [28]. By
calculating PCA, two perpendicular lines are drawn in a set of
points in space. To create the first of these lines, one with the
shortest average distance to all points is selected. Then, another
most suitable line is drawn among the lines perpendicular to
the first line drawn. These operations repeat until the variance
of a new dimension falls below a certain threshold. Therefore,
the obtained two lines formed the bases of a space.

Images consist of a set of points called pixels. Each point
has an intensity value. Anything can be distinguished in an
image according to the differences in the intensity values. By
applying PCA to these point clusters, two lines are drawn in
the direction of the object. In addition, the center of the object
can be considered the intersection point of these lines.

First, a frame is taken when YOLO detected the object.
Since a red green blue (RGB) image is a three-dimensional
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Fig. 7. Object orientation calculation steps.

matrix, this image is converted to a two-dimensional gray-
level image. A black-white image is obtained by applying an
adaptive filter to the gray-level image. This image generates
the point sets required for PCA. As seen in Fig. 7, the
directions of all objects occupying a specific range are shown.
The best direction line is the closest one to the box (yellow
box) drawn by YOLO. Thus, information about the other
objects is not processed.

D. Template Matching and Speed Calculation

After calculating the height and position of the object, the
next step was to calculate the velocity. Since the objects are
in motion, there is a limited time for grasping. Therefore,
accurate calculation of speed is a critical step. If the robot
arm cannot grip it on time, it may not have another chance to
try again.

Template matching is the process of finding and positioning
a template within an image [29]. A template is selected from
one image and scanned on the other image. Thus, it tries to find
the position of the template. The similarity score is calculated
by sliding the template on the image. If the similarity score is
more than a threshold value, the template is considered to be
found.

When the deep network detects an object for the first time,
it means the object is in the viewport. A template is taken
from the center point of the object. The intersection point of
the PCA lines is accepted as the center point for horizontal
objects. The YOLO box center point is the center point for
vertical objects. Because these points are the most unique point
candidates in the images. Then, the camera takes three more
images at certain time intervals. Template matching operated
on these images with the generated template. By comparing
the template matching results, the position difference of the
object was calculated. The motion of the object was obtained
in pixels. Thus, three speeds were obtained.

E. Robot Arm, Control and Object Grip

The Tinkerkit Braccio robot arm in Fig. 8 performed the
gripping task. The robot arm, whose kinematic model is shown
in Fig. 8, has six joints. The working area of the robot arm is a
circle with a radius of 40 cm. The gripper width and maximum
openings are 9 cm and 8 cm, respectively. The shoulder joint,
which connects the robot with the ground, provides orientation
according to the objects. A motor rotates the gripper, and a
motor opens and closes the gripper. It is possible to control
the remaining 3- wrist part as a 3 dof robot arm. The control
of the 3 dof planar robot wrist was made with ANN.

The robot arm grasps at a certain distance to constrain the
infinite point in 3D space. This distance (GripPointX) is 15
cm for horizontal objects and 36 cm for vertical objects. The
reason for gripping at different distances for horizontal and
vertical objects is that the grip is suitable for the operating
range of the manipulator. The robot arm can grasp horizontal
and vertical objects from above and from the front at these
distances, respectively. The object location on the conveyor
belt GripPointY is needed to calculate the angle of the shoulder
point. GripPointY is the y coordinate (CenterY) of the center
point found by PCA horizontal objects. For vertical objects,
it is the RealDis value. The center of the robot arm is at
the midpoint of the conveyor belt. Therefore, the angle of
the shoulder motor θ1 is calculated using GripPointY and
GripPointX as in Equation (6):

θ1 =



arctan
15−GripPointY

GripPointX
,

if GripPointY ≤ 15

− arctan
15−GripPointY

GripPointX
,

Otherwise

(6)

For the planar robot wrist of the robot arm, an ANN was
trained and controlled without kinematic calculations as shown
in Fig. 9. ANN had 40 nodes in the first hidden layer and 20
nodes in the second hidden layer. Activation functions were
ReLu in the hidden layers and Linear in the output layer.
Training was carried out according to accuracy and Adam was
chosen as the optimizer. The required distance (GripX), height
(GripY), and sum of angle (θsum) of the gripper are entered
into the input of the ANN. At first, 3000 data separately for
vertical and horizontal objects were produced for training and
testing as in Equation (7).

GripX = l1cos(θ2) + l2cos(θ2 + θ3) + l3cos(θ2 + θ3 + θ4)

GripY = l1sin(θ2) + l2sin(θ2 + θ3) + l3sin(θ2 + θ3 + θ4)
(7)

Where l1 = 12.5 cm (Link 2), l2 = 12.5 cm (Link 3) and
l3 = 15 cm (Link4 + Gripper) as shown in Fig. 8. Since
these objects are grasped at different positions and heights,
two ANNs are trained with the same characteristics according
to their grasping positions. The training and test data of ANN
are GripX ∈ [12 cm, 15 cm], GripY ∈ [-11 cm, -9 cm] for
horizontal objects, GripX ∈ [35 cm, 40 cm], GripY ∈ [-5
cm, 0 cm] for vertical objects. Training success for vertical
and horizontal objects was 91.63% and 99.99%, respectively.
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Fig. 8. Tinkerkit Braccio Robot arm and its kinematic model.

Fig. 9. ANN structure.

The data of the ANN created for vertical objects covers an
area of 5 cm x 5 cm, while it covers an area of 2 cm x 3
cm for horizontal objects. Due to this coverage difference, the
training success was lower as the datasets created for vertical
objects differed more than for horizontal objects. While GripY
is 1.5 cm above the conveyor belt for horizontal objects, it is
set to half of RealDis for vertical objects. GripX is calculated
according to GripPointY and GripPointX as in Equation (8);

GripX =


√
GripPointX2 + (15−GripPointY )2,

if GripPointY ≤ 15√
GripPointX2 + (GripPointY − 15)2,

Otherwise
(8)

In the calculation of the angle of the gripper, no extra
processing was performed for vertical objects because the
grip was made in the direction of movement. However, for
horizontal objects, the angle of the object on the conveyor
belt is calculated as in Equation (9) according to α and θ1.

θ5 =

{
α− (−θ1), if α− (−θ1) ≤ 90

α− (−θ1)− 180, Otherwise
(9)

Finally, the angles and grip time are sent to the robot arm
control card via serial.

Fig. 10. System flowchart.

IV. EXPERIMENTS

The operation of the system is given in Fig. 10. Making
experiments, two different object classes were tried to recog-
nize and grasp. One class of objects was 7 juice boxes of
fixed sizes but different colors. The other class consisted of 7
plastic bottles in different colors and sizes. The maximum and
minimum widths (diameter) of the pet bottles were 6 and 4.5
cm, respectively. The short and long sides of the rectangular
juice boxes were approximately 3.8 and 4.8 cm, respectively,
and a diagonal of about 6 cm. Table I presents the height
and width of the objects. During the trials, the speed of the
conveyor belt was kept constant at three different speeds (these
speeds were unknown). For each vertical object, 25 griping
attempts were made at each speed. A total of 350 trials were
conducted at all three speeds. A total of 1050 griping attempts
were made, with an equal number of vertical juice boxes and
bottles.

On the other hand, thirty trials were made for each horizon-
tal bottle at each speed of the conveyor. A total of 105 trials
were conducted with juice boxes at all speeds. Thus, a total
of 630 and 315 trials were conducted with bottles and juice
boxes, respectively.

The gripper could open its fingers up to 9 cm. For this
reason, there was a maximum tolerance of 2.5 cm and a
minimum tolerance of 1.5 cm for RealDis. Since the finger
length of the gripper was 8 cm, there was a tolerance of 8 cm
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TABLE I
HEIGHT AND WIDTH OF OBJECTS.

Object Height(cm) Width(cm)
Bottle 1 16.5 5
Bottle 2 15.5 4.5
Bottle 3 18 5
Bottle 4 17 5
Bottle 5 19.5 6
Bottle 6 20 5.5
Bottle 7 13.5 4.5
Juice Boxes 12.5 3.8 and 4.8

in the direction of movement. In other words, grasping objects
should be in an area of 8 cm x 9 cm.

The computer characteristics were a 8 GB of RAM and an
Intel(R) Core(TM) i5-3610ME CPU @2.70 GHz. The system
started to take images on average 0.4368 seconds after it had
started working for the first time. If the relevant object was
in the image, it took an average of 1.9856 seconds from the
first image acquisition until the angles were sent to the robot
arm. Computing in terms of memory, the usage was 29.5% at
the beginning, and then became up to 31.3% at the end of the
process. Whereas the CPU usage was initially [0, 1.5, 0, 1.5]
for each CPU, then it became [20.3, 0, 0, 7.8] during the first
image acquisition. CPU usage at the end of the process was
recorded as [18.7, 10.8, 28.1, 0].

V. RESULTS

A. Vertical Object Grip Results

The calculated average height, speeds, and successful grip
rates of the objects in the trials from the lowest speed to the
highest speed are presented in Table II.

Of the 350 trials at speed 1 (the lowest speed) 332 were
successful. Eighteen attempts failed due to eleven high seven
low-speed calculations. When the speed was calculated as
high, the gripper failed because the gripper performed gripping
before the object reached the gripper. On the other hand, when
the speed was calculated as lower than the actual speed, the
object touches the end of the gripper. The object that could
not go further due to the gripper also fell.

Of the 350 attempts at speed 2, only 14 failed. Eight and
six of the failed attempts were due to speed was calculated as
high and low, respectively.

The most unsuccessful speed in three different speed trials
was the highest speed (speed 3) with 19 unsuccessful attempts.
Twelve attempts failed due to high speed, and seven attempts
failed due to low speed. The robot arm removed the objects in
998 of the 1050 trials. As a result, the grasping success rate
was 95.05% for vertical objects. The biggest reason was that
the height of bottles 3 and 7 were shorter difficulty its detection
since the bottle lids were transparent. Since the camera’s side
view is not perpendicular but angled, tall objects appear to be
taller. This incorrect display caused the speed of the objects
to be calculated differently.

Velocities were calculated on average as 4.28, 5.1, and 6.02
cm/sec for speed 1, speed 2 and speed 3, respectively. In
speed calculations, it is seen that as the height of the object
increases, its velocity was calculated to be lower. However,

these differences are 3.51, 3.32, and 5.2 pixels/sec for speed
1, speed 2 and speed 3, respectively. Considering that 16 pixels
is 1 cm, the speed difference was calculated as 0.325 cm/sec
at most. This value is also suitable for the tolerance range of
the gripper for the conveyor belt length used.

The lowest success in vertical objects was 80% in speed 3
for bottle 7. In general, the lowest number of grasping was
again in bottle 7. The biggest reason for this might be that
the speed was calculated lower than that of other objects. At
the same time, since bottle 7 was the shortest, it had the least
area for gripping. Even though this bottle was longer than the
juice box, the area where it can be gripped was narrower due
to the curvature in the top area.

Grasping objects with different success rates at each speed
showed that grasping was performed independently of the
object. As a result of the trials, no variable other than speed’s
effect was observed in the failed trials. Variables such as object
sizes, object class, and location were not very effective in
grasping failure.

B. Horizontal Object Grip Results

A total of 630 and 315 attempts were made with bottles
and juice boxes, and the numbers of successful grasps were
583 and 281, respectively. In Table III, number and rate of
successful grip of bottles and fruit juice boxes by speed for
horizontal object is given.

The height of the bottles were important, but since even
the shortest bottle used was almost equal to the size of
the juice boxes, it was possible to grasp the short bottles.
However, in short bottles, it is more difficult to grasp since
the distance between the cap area and the center point is
shorter. In addition, the fact that the cap areas of the bottles
have different characteristics prevents working according to
the bottles of only certain criteria. Since the aim of the study
was to grasp objects with different properties, the grip success
rates of bottles with such criteria were not presented separately.

These results showed that the effect of speed was very small
and that the grip failures were caused by the errors given in
Table IV.

For bottles on horizontal objects, speed 1 led to the most
unsuccessful grip. For juice boxes, success was closed to
each other at every speed. Our success in grasping horizontal
objects was 93% and 90% for bottles and juice boxes, re-
spectively. The overall success was 91.53%. The main reason
for failure due to the miscalculation of the speed was seen as
timing.

Although the success in detecting target objects varies ac-
cording to YOLO’s training success, it is also possible to work
with similar objects that have never been seen. Thus, gripping
was realized without the need for costant object properties. It
has been seen that it was possible to calculate some angles
required for positioning the manipulator with ANN. Thus,
there was no need to search for a solution among many
possible solutions. Unlike 3D camera images, which require
high processing power, the necessary properties of objects
have been obtained with a 2D camera. Thus, it is ensured
that all these operations were realized quickly, which was
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TABLE II
CALCULATED HEIGHT DIFFERENCES, SPEEDS, AND SUCCESSFUL GRASPING RATES FOR VERTICAL OBJECT.

Speed 1 Speed 2 Speed 3

Height Speed Success Height Speed Success Height Speed Success
Objects difference (cm) (pixels/sec) Rate difference (cm) (pixels/sec) Rate difference (cm) (pixels/sec) Rate
Bottle 1 +0.73 67.11 0.84 +0.44 80.62 1 +0.54 94.42 0.96
Bottle 2 +0.26 67.06 1 +0.30 81.21 0.88 +0.11 95.24 0.96
Bottle 3 -1.83 67.85 0.92 -1.81 80.68 0.96 -1.95 96.43 0.88
Bottle 4 +0.62 67.48 0.88 +0.43 81.13 0.92 +0.45 96.11 0.88
Bottle 5 +1.52 67.14 1 +1.41 80.64 0.96 +1.54 94.48 0.96
Bottle 6 +2.46 66.42 1 +2.44 80.09 0.92 +2.48 93.63 0.96
Bottle 7 -0.05 66.65 0.92 -0.07 79.43 0.92 -0.21 92.72 0.80

Juice Boxes -0.23 69.93 0.96 -0.20 82.75 0.98 -0.31 97.92 0.98
Mean 68.51 0.95 81.65 0.96 96.32 0.95

TABLE III
NUMBER AND RATE OF SUCCESSFUL GRIP OF BOTTLES AND FRUIT JUICE BOXES BY SPEED FOR HORIZONTAL OBJECT.

Bottle Fruit juice boxes

Number of Number of
Speeds successful grips Rate successful grips Rate
Speed 1 185 0.88 96 0.91
Speed 2 198 0.94 93 0.89
Speed 3 200 0.95 93 0.89
Total 583 0.93 282 0.90

TABLE IV
REASONS FOR FAILED GRASPING.

Reason Number of attempts Explanation
Height incorrectly calculated 10 The object could not be grasped

because the ANN calculated the height incorrectly.
Timing 65 The time when the object was grasped

was calculated incorrectly.
Gripper made contact with the bottle. 9 The position of the bottle changed from the

grip as the gripper touched the moving bottle.
The location was calculated incorrectly. 6 Grip did not occur because the gripping

location was calculated incorrectly.

significant for real-time applications. As a result, horizontal
or vertical objects with different speeds and properties could
be grasped with the robot arm.

VI. CONCLUSION

In this study, an application of a robot arm to grip moving
objects was carried out. Deep network-based YOLO recog-
nized and detected objects. Image processing methods were
used to calculate the speed and height of objects viewed with
2D cameras. The gripping was performed according to the
unknown speed and position of the objects. The proposed
algorithm for speed calculation, which is one of the most
significant parameters in the grasping of moving objects,
was quite effective. The algorithm could not calculate with
sufficient precision for gripping up to 4.95% of the trials made
without the speed information given to the system. In general,
a successful grasping rate was achieved at different speeds.

When we looked at the errors we encounter in the system,
we found that there are four different error states. The main
reason for the problem that the gripper cannot hold the object
(especially cylindrical objects such as bottles), as a result of the
wrong determination of the landing distance was because of
the margin of error in the ANN. To overcome this, we suggest

improvements to the training of the ANN. By giving the ANN
an extra object class input, the class information from YOLO,
can be added to the training. When we look at the errors
encountered in timing, we see that there is a miscalculation of
the speed. One of the main reasons for this is miscalculation of
boundary lines in pattern matching. We recommend increasing
the camera resolution to fix this error. We see that the main
reason for the problem of the gripper touching the object
during the holding process is the low sensitivity of the robotic
manipulator. In addition, the wrong calculation of the speed
and the processing time delays affect the formation of this
error. We can say that the positioning error of the holder is due
to template matching. Incorrect results in template matching
are dependent on camera and lighting. Therefore, it is of great
importance to install a high-resolution camera and the right
lighting setup (perhaps a closed image capture unit can solve
this problem) in applications for object grasping with the robot
arm.
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