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Abstract—Defect detection of the solar cell surface with texture 

and complicated background is a challenge for solar cell 

manufacturing. The classic manufacturing process relies on human 

eye detection, which requires many workers without a steady and 

good detection effect. In order to solve the problem, a visual defect 

detection method based on a new deep convolutional neural network 

(CNN) is designed in this paper. First, we develop a CNN model by 

adjusting the depth and width of the model. Then, the optimal CNN 

model structure is developed by comparing the performance of 

different depth and width combinations. This research focuses on 

finding a way to distinguish defects in solar cells from the 

background texture of busbars and fingers. The characteristics of 

solar cell color images are analyzed. We find that defects exhibited 

different distinguishable characteristics in various structures. The 

deep CNN model is constructed to enhance the discrimination 

capacity of the model to distinguish between complicated texture 

background features and defect features. Finally, some 

experimental results and K-fold cross-validation show that the new 

deep CNN model can detect solar cell surface defects more 

effectively than other models. The accuracy of defect recognition 

reaches 85.80%. In solar cell manufacturing, such an algorithm can 

increase the productivity of solar cell manufacturing and make the 

manufacturing process smarter. 

 
Index Terms—Convolutional neural networks, Deep Learning, 

Solar Cell, Surface Defect. 

 

I. INTRODUCTION 

olar power has become an exciting alternative to electrical 

energy due to possible environmental and global oil 

shortages. Solar cells that transform the photons from the sun 

to electricity are frequently based on crystalline silicon in the 

present market [1]. They can achieve good performance in 

practical lifespan and conversion productivity among the 

currently feasible techniques. However, the latest printing 

process of solar cells has some defects [2]. These defects may 

lead to poorer performance or even adverse effects such as 

reducing the power productivity of solar cells [3]. To prevent 

the reduction of product power, the defects need to be 

monitored during the production line.  

 
 

Y.S. Balcioglu., is now Gebze Technical University, Kocaeli, 41430 Turkey. 

He is now with the Department of Management Information, Gebze Technical 

University, Kocaeli, 41430 Turkey (e-mail: ysbalcioglu@gtu.edu.tr).  

B. Sezen., is now Gebze Technical University, Kocaeli, 41430 Turkey. He 

is now with the Department of Business, Gebze Technical University, Kocaeli, 

41430 Turkey (e-mail: bsezen@gtu.edu.tr). 

C.C.Cerasi., is now Gebze Technical University, Kocaeli, 41430 Turkey. He 

is now with the Department of Management Information, Gebze Technical 

University, Kocaeli, 41430 Turkey (e-mail: cerencubukcu@gtu.edu.tr). 

As a result, surface defect detection of solar cells is essential 

for checking the quality of solar cell products during the 

manufacturing process [4]. Today's manufacturing corporation 

is progressively subject to countries' competition because of 

boosting production costs and expanding customer needs. In 

today's world, products are more regulated with their 

technology—these circumstances pressure to cut down 

production costs and raise the quality of goods [5]. To meet the 

expanding quality standards of industrial manufacturing 

processes, computer vision systems are used for automated 

surface inspection to automatically test the surface of a finished 

product for defects such as scratches or holes, et cetera [6]. 

Computer vision systems are advantageous compared with 

manual inspection because they can achieve a higher level of 

automation and objectivity, which has allowed them to be 

applied in many industries [7]. 

For most cases, manual surface defects inspection is still 

performed in the production process [8]. This results in 

misjudgments and scale-down manufacturing efficiency due to 

human fatigue. However, computer vision technologies are 

being developed to track these defects and significantly 

improve efficiency and reliability [9]. Computer vision-based 

mainly includes image acquisition through an optical system 

and a defect detection process to capture images [10]. 

Computer vision's next step is optical quality control (OQC) 

[11]. Two processes are crucial in manufacturing and 

production to fulfill customer requirements during the quality 

control procedure. First, a good product will be made during the 

inspection by fulfilling the customer requirements through sales 

continuity [12]. Two processes that care for the product 

inadequacy or defects during visual quality control are crucial 

to this primary process. Industrial sectors such as 

manufacturing and agriculture have been employing humans to 

handle the visual investigation of products and goods [13]. 

Although this is one of the critical elements in the production 

process, it is a tiring and demanding job that may lead to 

mistakes resulting from fatigue, possibly compromising the 

entire production procedure. Because of that OQC system has 

helped increase the inspection of products produced quality 

[14].  

Silicon solar cells are equipped with a grid or mesh of 

metalized lines [15]. They are printed on both the front and rear 

of the cell. These grid or mesh lines and the finger lines, often 

screen-printed, facilitate the transfer of the DC electricity 

produced by the cells when struck by photons [16]. In general, 

solar cells used for energy production include one or more 

busbars whose metallic coatings facilitate higher current 
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generation. Additionally, these coatings guard against 

oxidation, further degrading the device's performance [17]. 

Furthermore, a grid of super-thin metallic fingers conducts the 

produced DC to one or more busbars in order to fully utilize 

each solar cell's production potential [18].  

As mentioned before, the metal lines arranged in strips on the 

front and back of the silicon solar cells provide the electric 

current between the cells [19]. Along with these, vertical lines 

are called fingers. Surface defects on the surfaces of solar cells 

reduce the performance of solar cells [20]. However, with this 

problem, the destruction of the busbars on the solar cell and the 

surfaces of the fingers likewise reduces the efficiency of the 

solar cells [21]. 

This article proposes a low-cost image processing system to 

solve the above problems [22]. Deep convolutional neural 

networks were used as a method. First, a low-cost image system 

is set up to acquire image data. In the second stage, images of 

the surfaces of the solar cells are obtained thanks to this system. 

In the third step, this received image data is divided into pixel 

areas in a 2D environment, and error segmentation and 

classification are made. Finally, the model performance of the 

deep convolutional neural network model formed in the last 

step was compared with the model performances of the classical 

convolutional neural networks [23]. In this fig. 1, the main 

contributions of the proposed method are summarized.  

 

 
Fig. 1.  Busbars and fingers. 

 
 

A. Problem  Statement 

The manufacture of solar cells relies heavily on production 

flexibility, individualization, and quality control. Hence, the 

development of intelligent manufacturing often focuses on 

these aspects of manufacturing. In particular, the manufacturing 

processes involved in the solar panel production industry place 

a significant emphasis on flaw identification and categorization. 

The identification of flaws is one of the most important aspects 

of effective product quality control. The conventional technique 

of detection is dependent on human labor. However, when 
carried out for an extended period of time, manual detection 

may result in poor detection efficiency as well as a high rate of 

missed inspections. Also, most broken solar panels are either 

recycled or reprocessed, and the ones that can't be fixed are 

usually just thrown away. 

Therefore, in order to process them more effectively, it is 

necessary to categorize damaged solar cells according to the 

kind of defect present. This offers a wealth of information that 
may be used for manufacturing defect checks. On the other 

hand, the vast majority of the detection techniques still rely on 

manual detection methods. Therefore, intelligent detection 

techniques of solar cell failures are still a challenge and have 

always been a particular concern of solar panel processing 

manufacturers in an automated industrial production line. This 

is due to the fact that solar cells have been around for a very 

long time. 

Faults due to a small section missing from the margin are the 

main focus of this study.Due to its precision and speed, the 

CNN approach has become more popular for application in 

object detection. Despite this, the identification of tiny targets, 
particularly flaws on solar panels, continues to provide a 

number of hurdles and difficulties. As a result, the purpose of 

this work is to propose a small area defect detection technique 

called DCNN that is based on CNN for the purpose of 

improving the detection performance of small area defects. 

  

 
II. RELATED WORKS  

 

Over the past ten years, deep learning - or deep neural 

networks has become dramatically more effective and widely 

applied to various fields, including image detection and speech 

recognition [24]. In addition, many industrial practices have 

also served deep learning development, including machinery 

fault diagnostics, operational verdict making, et cetera [25]. In 

general, various hidden layers are stacked in the deep neural 

network architecture, which largely contributes to the learning 

capacity of the data-driven model [26]. Apart from a more 

conventional multilayer structure, more capable variants have 

also been suggested and achieved great success, including 

convolutional neural network (CNN), deep neural network, 

recurrent neural network, generative neural network [27]. 

Furthermore, high-level granularity to data using CNNs has 

made it easy to detect discoveries. With a limited number of 

parameters, a machine learning model's overall complexity and 

ability to process raw data can be measured in both high- 

frequency and low-frequency signals [28]. Hence, CNN has 

been widely adopted to explore different kinds of industrial 

data, including digital vision and imaging [29].  

Recently, CNN and its variants have been studied for surface 

defects detection. The results in textiles, strip steel, healthcare 

and buildings have been preliminarily inspected [30]. Cortes 

and Sanchez, proposes using a deep learning approach for 

automatic diagnostic classification of chest X-ray imaging 

related to specific pathologies [31]. Lee et all, experiment use a 

deep convolutional neural network (CNN) to detect surface 

defect datasets such as textile and steel [32]. This paper 

examined the impact of different CNN models on the test 

results. In 2017, a new DCNN model structure was proposed to 

be used instead [33]. The model uses both samples without 

defects and pieces with defects as input, and the output is a 
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twelve-class classifier. The examples are the two of each of the 

twelve classes. Wu et all, introduces a general surface defect 

detection method using deep learning and which achieves state 

of the art performance on both arbitrary textures and special 

structure images [34]. Another work, Tao et all; describes an 

approach to defective metal detection that takes into account 

real world conditions such as lighting, image capture quality, 

and defect patterns that are not uniform. This system, 

automatically localizes and classifies large defects on metallic 

surfaces using semantic segmentation [35]. Zhang et all; 

Proposes a one-class classification method based on deep 

convolution neural network, which effectively addresses the 

problem of feature extraction [36].  

The dataset is small, which could lead to overfitting [37]. 

Furthermore, there are not enough labels to distinguish between 

the defects and non-defects. Another paper proposed an 

algorithm to detect defects based on an ensemble of existing 

defect detection models instead of building a new one. The 

proposed method can inherit weights from other models to 

reduce overfitting and improve model accuracy [38]. Apply a 

CNN to an LED surface, realize the identification and 

positioning of various defects in the multispectral 

characteristics of complicated surface defects in solar cells, and 

reach an accuracy of 94%. However, the datasets used in the 

literature are single-channel images, which are difficult to 

describe and contract with the multi-channel characteristics of 

complicated surface defects in solar cells [39]. The authors of 

"Solar Cell Testing with Convolutional Neural Networks" use 

CNN to detect defects in solar cells. The authors build and train 

a deep neural network to detect potential defects in solar cell 

images in their paper [40]. Some possible defects which can be 

seen using the CNN include missing connection and excess 

connection. The author's approach is relatively novel, as the 

CNN is trained using less than 70 images and thus obtains 

relatively low detection rates. Su et all; proposed CAN, a 

complementary attention network that selects features 

discriminative for both the background and defects, allowing 

for better defect detection. With this feature, addresses defects 

in solar cell EL images by integrating two networks that use 

spatial and channel attention, respectively [41]. Chen et all; 

derives a deep convolutional neural network model to classify 

solar cell surface defects based on multi-spectral light spectrum 

information [42]. Bartler et all; proposes DeepTransportNet, an 

end-to-end deep learning architecture for automatic 

differentiation from feature extraction to defect classification 

[43]. The research on solar cells that has been done so far 

utilizing the CNN approach has only reached the stage of 

locating faults [42], [44], [45], [46] on the panel surfaces of 

solar cell structures, according to an analysis of the relevant 

published literature. Nevertheless, the identification of faults on 

the busbar and finger surfaces of the solar cell is one of the most 

significant advances that can be attributed to this work.On the 

other hand, as part of this research, a novel method of image 

processing was developed, which we did not document in this 

work due to our plans to cover it in another study. 

A. Contrıbutıons of thıs Study 

The design that has been suggested for DCNN takes its cue 

from the model of the CNN network, but with several changes, 

especially for the identification of minor defects. 

The first step is to capture picture data by putting up a simple 

and inexpensive imaging device. Additionally, there is an 

adaptive module for deep learning that is based on 
convolutional neural networks (CNNs). Deep Convolutional 

Neural Networks have the ability to learn hierarchical features 

in various layers, which gather information from objects of 

varying sizes. Specifically, spatially rich features in shallow 

layers have better resolutions, making them more useful for the 

identification of flaws in smaller areas. The DCNN method that 

was shown is better for figuring out where problems are in 

smaller areas. 

Second, the k-fold cross validation approach is utilized to 
demonstrate that the newly developed deep CNN model is 

superior to previous models in terms of its ability to identify 

flaws on the surfaces of solar cells. It is required to first 

establish predefined boxes that are tailored to the sample size in 

order to increase the efficacy of fault identification in tiny areas. 

The previous anchor boxes are then used in the process of 

detecting, which could make the prediction scale more flexible. 

 

 
Fig. 2. Various surface defects of busbars and fingers on solar cell. 

 
III.PROPOSED APPROACH  

  

This study selected solar cell busbars and fingers as the 

inspection model. The Convolutional Neural Network, often 

known as ConvNet, is a variant of neural networks that is 

mostly used for applications in the fields of voice and picture 

recognition. The high dimensionality of pictures may be 

reduced by their built-in convolutional layer without any 

information being lost in the process. That is why CNNs are 

well suited for this use case.We focused surface defections on 

the surface of busbars and fingers. The color masking method 

selects only busbars and finger surfaces on solar cells. For this 

purpose, the regions with a blue cover on the solar cell were 
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masked and excluded from the analysis [47]. We built a low-

cost system to capture the dataset used in this paper, shown in 

(fig. 3). The testing solution can be incorporated on the 

production line in the constructive variation that has been 

provided. This removes the need for a machine and the 

manpower that is associated with it in order to test the solar 

cells. With the suggested method, the cost of a machine with 

comparable capabilities will be reduced to just 1000 euros, 

down from the current level of 5000 euros. This will be a huge 

savings for companies. The system established in this study 

consists of a camera working with a rail movement, lights, 

production line and solar panels. As the solar panels pass over 

the production line, their images are recorded according to 

their production ID numbers. For this purpose, we captured 

600 labeled images. The images are in red-green-blue (RGB) 

color space; every image has 4128x3096 pixels. Before the 

analysis, we converted all images to grayscale image color 

format. Our study in the field of application was planned to 

carry out in-depth learning training on 200 different solar cell 

pieces with surface defects. Six hundred separate solar cell 

busbars and fingers images were to be analyzed through this 

learning. Fig. 1 shows the flow of the proposed approach.  

 
Fig. 3. Flow of the proposed approach.  

  

The blue regions, which are the cell areas of the solar cells, 

were removed from the image by color masking, and only the 

busbars and fingers regions were left for analysis. Sharpen and 

despeckle filters are used to remove error elements from the 

image. Fig. 4 shows an example process.  

  

  
Fig. 4.  Illıstration of segmentation.  

  

The inspection system for surface defects of printed 

silicon solar cells is implemented to detect the above-

mentioned flaws, as shown in (fig. 5).  

  

  
  

Fig. 5. Inspection system for surface defects of printed silicon solar cells. 

  

Our application will apply the learning-based model and 

examine preliminary data processing and detailing operations 

independently from the model. The paper has the following 

research improvements.  

1. Proposes an image-processing-based, low-cost defect 

detection for a hardware-software solutiın for the end of line 

production not only the quality of the product but also the 

stability and yield of the production process.  

2. This paper analyzes the effect of model size and image 

quality of a DCNN model on defect detection. Our test results 

indicate that the DCNN model improves accuracy when the 

depth of the convolution kernel is significant and the image 

quality is high.  

3. Experimental results show that surface defection on small 

pieces occurs more with clean captured images. Furtherly, 

camera quality is essential in this system.  

The setup installed for this application is visually stated 

below in (Fig. 5). The line scan camera was used in the image 

capture process
 
—a camera connected to the computer system. 

When the solar cells move on the production line, the system 

can analyze the parts in real-time. After that, it shows the 

results instantly to the screen which part is defective or not.  

The images used in this study were created with data 

collected from the production line. Dataset images have the 

same resolutions and different crack sizes and types. For the 

dataset, 1200 visual data were used in the training phase. In the 

testing phase, 300 visual data were used. Visual data with a 

total of 80 different defects were analyzed. First, test the 

accuracy of the results; 20 error-free solar cells are randomly 

placed in the analysis. A total of 100 visual images were 

analyzed. This study's primary purpose is to calculate the 

quality ratios of solar cell busbars and fingers based on 

previously trained data. Against the traditional neural network 

method, deep learning neural networks are used here. The 

estimation rates obtained through the results and the deep 

learning are shown in table 1. Fig. 6 shows the DCNN structure 

that we have established.  
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Fig. 6. Solar cell DCNN Structure.  

  

 
TABLE I  

THE ARCHITECTURE OF DCNN  
Layer type        Numb. of Filters       Size of feature map              Size of filters              Stride                    Paddin                                                         
(Height x Width x Channel)  

Conv1                       64                     224x224x64                                 3x3x3                          1x1                         1x1   
Relu Layer  
Max pooling             1                       112x112x64                                 2x2                              2x2                          0  
Conv2                      128                     112x112x128                            3x3x64                          1x1                         1x1 
Relu Layer  
Max pooling            1                         56x56x128                                   2x2                              2x2                          0  
Conv3                      256                       56x56x256                               3x3x128                       1x1                         1x1 
Relu Layer  
Max pooling            1                          28x28x256                                   2x2                            2x2                            0 

Conv4                     512                        28x28x512                                3x3x256                    1x1                           1x1 
Relu Layer  
Max pooling          1                             14x14x512                                2x2                             2x2                            0  
Conv5                     512                         14x14x512                               3x3x512                     1x1                          1x1 
Relu Layer  

 

  

  

The 5-layer convolutional layer achieved the best results in 

our established CNN model trials. Pool6 has been removed 

from the model to avoid overfitting problems. In total, five 

layers and four pools are fully connected. The max-pooling 

layers are 2x2 stride 1x1. We use the LeNet architecture. The 

first convolutional layer is conv1; the second convolutional 

layer is conv2; the third convolutional layer is conv3; and so 

on. The resolution of the last convolutional layer is 14x14. 

The input layer's resolution is 224x224 [48], each input image 

is normalized to this size. Table 1 shows an illustration of the 

architecture of CNN.  

  
 IV.  RESULT  

  

To measure the capability of the proposed model, the 

defect detection capability of 4 different models was 

calculated based on the fault types, scratches, connection 

bridge breaks, and holes on the surface. The results obtained 

are shown in (Fig. 7). When Fig. 7 is examined, it is seen that 

the best result is obtained with DCNN. The second-best result 

was obtained with F-RCNN.  

  
Fig. 7. Comparison of models.  

  

When Table 1 is examined, one can see all the details of the 

created DCNN model. It consists of 5 layers, with a total of 4 

max-pooling layers. Image reduction was made by decreasing 

the image resolution twice as much as each layer. In this way, 

it is aimed to increase the prediction success before the 

decision. At this stage, the primary aim is to determine the 

faulty parts on the surface. In the second stage, the cover error 

rates were determined by analyzing the authentic images 

compared to the wrong test images in the decision phase.  

This paper designs four models of neural networks with 

various depths and sizes and analyzes their effectiveness for 

solar cell busbars and fingers. We use precision, recall rate, 

and F-measure to ensure better results to classify the uncertain 

scratches detection results. Precision measures the correctness 

of detection and separation and is calculated in equation 1. The 

recall equals the precision of detection and separation defined 

in equation 2. Therefore, F-measures consider both precision 

and recall and are measured in equation 3. Table 3 shows the 

precision, recall, and F-measure scores for the solar cell 

busbars and fingers.  

  

                                              (1)        

  

                                                   (2)                                            

  

                     (3)                       

  

  

     
 

 

 

Fully                        512 
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TABLE II  
RESULTS OF DIFFERENT ARCHITECTURES OF SOLAR CELL BUSBARS AND  

FINGERS NN   

 CNN RNN F-RCNN DCNN 

     

Precision %91 %90 %85 %90 

Recall %63 %56 %72 %82 

F-measures 0.744 0.69 0.779 0.858 

  

The empirical results for the four different architectures of 

solar cell busbars and fingers NN are given in Table 2. The 

results indicated that the 5-layer convolutional layer DCNN 

with a busbar solar cell finger model has a 5% higher 

precision than the 4-layer convolutional layer F-RCNN 

model. Furthermore, precision and recall are improved when 

kernel size is grown on the four-layer, convolutional, F-

RCNN model. Table 2 shows that the DCNN architecture 

model has improved the detection value of surface defection 

compared to that of the previous FRCNN architecture model. 

Furthermore, as shown in Table 2, the recall of the DCNN 

model is relatively higher.  

The experiment is completed on the Raspbian o.s., kernel 

version: 5.10, the framework was used by the computer. 

Training took place on a high-end i9 computer with 64 GB of 

memory and GTX 2080 graphics cards. The learning rate of 

the DCNN model was 20000 epochs of training. The Dropout 

neuron ratio is 40%. Figure 8 shows the serial numbers of the 

solar cells barcodes used for analysis.  

  

  
Fig. 8. Example of 1 to 9, solar cells serial number sheet.  

 
TABLE III RESULT 

SCORES OF SURFACE 

QUALITY (TEN 

SAMPLES) 

PART NO SURFACE QUALITY 

RATE 

SURFACE QUALITY 

DEFECTION RATE 

697234774981 0.6450 0.355 

800123995478 0.5254 0.4746 

787041756437 0.7890 0.2110 

441450162431 0.9235 0.4461 

489873758501  0.6323 0.3677 

447508661024 0.9604 0.0396 

818251589587 0.4911 0.5089 

327138997096 0.8619 0.1381 

843255766445 0.9707 0.0293 

688723573212 0.7743 0.2257 

 

When we analyze Table 3, we can see the percentages of 

surface defect controls of 100 serially numbered solar cells. 

Two pieces (375962513219, 513698768324) included in the 

analysis process were detected as 100% error-free. Apart from 

these, there are defects on the surface of 98 parts with surface 

defects.  

  

  
Fig. 9. Surface quality estimation rate.  

  

When we examine the data visual above, it is seen that the 

error rates of the parts passing through the production line are 

generally low, and the pieces have common defects. However, 

even if the lowest error rate is below one percent, it will cause 

problems in its operation. Fig. 9 shows that the surface quality 

estimation rate resulted as a % and computed the total number 

of iterations during the analysis.  

  

A. Defect Regıons Localızatıon  

  

As a result of the analysis of 20 visual data selected as a 

sample in fig. 10,  a high accuracy rate was achieved in 

detecting scratches and cracks on the surface. However, high 

performance was not achieved in detecting round, dot-shaped 

holes, preferably small ones. The reason for this is that the 

analysis is processed in one dimension. Therefore, more 

image layers should be increased for a much higher surface 

detection, and more detailed data augmentation should be 

done. However, these transactions will require massive 

systems and budgets.  
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Fig. 10. Heat vision of surface defects detected on 20 visual data selected as  

samples. 

  

  
Fig. 11. Examples of localization on Solar cell busbars and fingers. The map 

highlight the detection region. Predicted bounding boxes from the dataset are 

in red.  

  

Our CNN model performs remarkably well on defect 

regions localization. For two different surface problems, line 

and scratch marks from our dataset are generated, as shown in 

(Fig. 11). Afterimage processing on Solar cell busbars and 

fingers, defects are localized with a bounding box in red.  

  

  
Fig. 12. The Comparing Receiver Operating Characteristic (ROC) 

Curves with the best quality metrics.  

  

The receiver operating characteristic (ROC) curve is used to 

rate the prediction capacity of the model. When correlating 

different classing models, the ROC curves of each model be 

drawn, and the area under the curve can be used as a sign of 

the quality of the model. For example, it can be found in Fig. 

12 that the DCNN model shows a more vital ability to defect 

defections, which helps to identify the complex surface defects 

problems. The experimental results also show that the DCNN 

model has higher accuracy and adaptability to defect detection 

problems than conventional models.  

  

 

 

  
V. CONCLUSION  

  

This study includes the quality control of solar cell busbars 

and fingers passing through the production line using the CNN 

method and comparing them with a standard test comparator, 

calculating the loss of surface quality, and classifying these 

losses by detecting them on the surface. The study is divided 

into two stages. The first stage detects the parts with defective 

surfaces and their ordering; the second stage examines the 

randomly selected samples' surfaces and categorization.  

When we analyzed the model performance results, 98 pieces 

were defective, and two were non-defective. Therefore, when 

we look at the analysis results from table 1, 98 errors were 

detected; however, in two samples randomly placed to test the 

DCNN reliability, it was 100% successful. Therefore, the 

Equation was tested correctly.  

Out of the obtained numerical values, thirty-five parts below 

70 in the study; show the parts with the most errors produced in 

that production line. These were obtained as (0,30) between 

(0,69) respectively. Apart from these, the highest number of 

clusters was obtained between 90% and 99%.   

We did not use a higher resolution image because to obtain a 

higher resolution it is necessary to use much higher quality 

image systems. Our aim in this study was to keep the cost at 

low levels.For future study could be carried out using image 
details by increasing the higher image layers and using higher 

resolution images. 
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