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Abstract—Univariate forecasting methods are fundamental for
many different application areas. M-competitions provide im-
portant benchmarks for scientists, researchers, statisticians, and
engineers in the field, for evaluating and guiding the development
of new forecasting techniques. In this paper, the Dynamic Time
Scan Forecasting (DTSF), a new univariate forecasting method
based on scan statistics, is presented. DTSF scans an entire
time series, identifies past patterns which are similar to the
last available observations and forecasts based on the median
of the subsequent observations of the most similar windows in
past. In order to evaluate the performance of this method, a
comparison with other statistical forecasting methods, applied in
the M4 competition, is provided. In the hourly time domain, an
average SMAPE of 12.9% was achieved using the method with the
default parameters, while the baseline competition — the simple
average of the forecasts of Holt, Damped, and Theta methods —
was 22.1%. The method proved to be competitive in longer time
series, with high repeatability.

Index Terms—Univariate methods, M4 competition, bench-
marking, dynamic time scan forecasting.

I. INTRODUCTION

he development of predictive models is widely debated
Tin the literature [1]-[4], since it assists the control of
associated uncertainty intrinsic to random variables. Given the
above, there are several categories of predictive models based
on this physical knowledge (such as spectral analysis [5])
of intensive machine learning and statistical approaches [6].
Forecasting models associated with a single random variable
as a function of time support univariate forecasting, which is
a very important area given its application in various sectors
such as [7]-[9], business [10]-[12], energy [13]-[15], among
others. In this context, it is fundamentally valuable to develop
meticulous criteria for selecting the models [16].

The M-competition [17]-[20] is the most important fore-
casting competition in academia, in which researchers from all
around the world test their methods on real-life, anonymous
time series from distinct areas of industry. The 4th edition took
place in 2018 [17], and 17 methods based on combinations
of statistical- and machine-learning or hybrids were tested on
100,000-time series. Outputs from these events are registered
in review articles, pointing out the directions of development
and refinement of the most promising forecasting techniques

Rodrigo Barbosa de Santis is with LADEC Lab, Federal University of
Minas Gerais (UFMG) e-mail:rsantis@ufmg.br

Tiago Silveira Gontijo is with LADEC Lab, Federal University of Minas
Gerais (UFMG) e-mail:economista@ufmg.br

Marcelo Azevedo Costa is with LADEC Lab, Federal University of Minas
Gerais (UFMG) e-mail:azevedo @est.ufmg.br

[21]. The 5th edition took place in 2020, and focused on a re-
tail sales application with 42,850 unit sales hierarchical series,
with the objective to produce the most accurate point forecast
as well as the most accurate estimation of the uncertainty of
these forecasts [22]. The 6th competition will take place this
year and it will focus on predicting the overall market returns
of individual stocks [23].

Whereas most well-known forecasting methods are based
on identifying intrinsic components of the time series, such
as level, trend, or seasonality, a particular group of methods
based on similarity searches have been arousing interest in
the areas of meteorology and renewable energy [24], [25].
These methods consist of identifying past weather patterns
("analogs") that closely resemble the current state. These
methods are capable of handling lengthy historical time series
in order to produce accurate and interpretive forecasts.

Among these methods, Dynamic Time Scan Forecasting
(DTSF) consists of a new and simple analog-based forecasting
technique [26]. It generates forecasts based on similar patterns,
those with the highest R2 scores, calculated from the last
available window.

The accuracy of analog-based methods is scarcely reported
in areas other than energy prediction and is mostly limited
to wind and solar energy forecasting applications [27], [28],
which begs the question: "are analog-search-based models
competitive compared to classical statistical prediction meth-
ods?". Additionally, no research was found that compared
analog search methods and statistical methods.

To fill this gap, the current paper describes the DTSF
forecasting method and discloses its performance on the
M4 competition time series. We compare DTSF with eight
classical statistical methods (Naive, Seasonal Naive, Simple
Exponential Smoothing, Holt, Damped, Theta, AutoRegres-
sive Integrated Moving Average (ARIMA), and ExponenTial
Smoothing state space model (ETS)) and a combination of the
outcomes of 3 individual methods (Holt, Damped, and Theta),
which compose the baseline of the M4 competition. The M4
benchmark dataset was selected for this research because: (1) it
consists of a reliable and curated benchmark base, adopted by
other researchers and practitioners for developing and testing
forecasting methods; (2) it has a significant number of series:
100,000 time series, with different frequencies (hourly, daily,
monthly, weekly, quarterly, yearly); (3) it has been mostly
predominated by statistical methods of forecasting; (4) and
it is composed of univariate and independent series.

The major contributions of the present paper can be sum-
marized as follows:
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o the study applies a new method to M4 competition for
benchmark purposes;

o the method is compared with nine classical statistical
methods and a combination of the outcomes of three
individual methods, which compose the baseline of the
competition;

« in addition to applying the method, along with its default
parameters, an exhaustive search with hold-out validation
is adopted for model selection.

The major conclusions are:

« in the hourly time domain, an average error of 12.9% was
obtained using the method with the default parameters,
while the competition baseline was 22.1%;

« through the automatic selection of parameters, we boosted
the accuracy of the method by 12.31% compared to the
method application without parameters selection;

o the method proved to be competitive, both in terms of
accuracy and computational cost, over long time series
and with high repeatability.

The present paper is organized into 5 sections. Following
this Introduction, Section 2 provides a review of the proposed
forecasting method. Section 3 provides a background of the
datasets and methods applied in this study. Section 4 presents
the results and discussions obtained from the application of
the methods. Finally, Section 5 concludes the present paper
and includes some recommendations for future studies.

II. MATERIALS AND METHODS

A. M4 Competition Dataset

The data used in the current study comes from the M4 com-
petition dataset [17]. It is composed of 100,000 time series,
taken from different domains such as Economics, Finance,
Demographics, and Industry, among others. The time series
show different periods: yearly, quarterly, monthly, weekly,
daily, or hourly.

Table I summarizes the information about the competition’s
dataset. Domain refers to the time period from which the
data have been extracted, ranging from hourly to yearly. The
number of Series shows how many time series are available,
in total. The dataset is mostly composed of a collection of
time series from yearly, quarterly or monthly domains - 95,000
time series. The minimum length is the shorter time series
in the given domain: the more aggregated the domain, like
yearly, the more difficult it is to retrieve data. For example,
hourly time series are longer, having at least 700 available
observation points. Horizon refers to how many steps are
being predicted in the future and are being used for metric
computation. Seasonality represents the expected recurrence
of an event in a given time domain.

The dataset provides a public and reliable source for com-
paring statistical, machine learning, or hybrid methods on
univariate time series forecasting [29]. It is internationally
recognized by researchers and data scientists as the most
important competition in this area [30].

TABLE 1
SUMMARY OF M4 COMPETITION DATASET, INCLUDING
TIME-FREQUENCY, MINIMUM LENGTH OF TIME SERIES,
AND FORECAST HORIZON OF EACH TIME SERIES.

Domain Number of series Min. length  Horizon Seasonality
Yearly 23,000 13 6 1
Quarterly 24,000 16 8 4
Monthly 48,000 42 18 12
Weekly 359 80 13 52
Daily 4,227 93 14 7
Hourly 414 700 48 24

B. Dynamic Time Scan Forecasting

DTSF is a forecasting method based on scan statistics [31]
and was originally developed to address the problem of wind
forecasting for Brazilian power generation plants. It consists
of scanning a time series and identifying past patterns (called
"analogs") similar to the last observations available of the time
series (called "query") [26].

Let y; be a time series of length N, ¢ =1, ..., N. Firstly, let
vector y[*! be defined as the last w observations of the series:

y[w] = [yN_w—O—la ---,yN]~ M

The goal of DTSF is to identify analogs in the time series
which are greatly correlated with vector y!*’!. Hence, the set
of candidate vectors can be defined by:

ng] = [Yt—wt1s e Y] 2)
where t = 1, ..., N—2-w. The upper limit of the time sequence
(N — 2. w) guarantees that vector x][fw] does not overlap with
vector y[*!. Fig. 1 presents the DTSF procedure. Given the
last w observed values, which comprises vector y[w], a rolling
window with the same size (x}) is used for scanning previous
values of the series.

Lastly, DTSF provides a k steps ahead forecast of the time
series, Yn+1,---s YN+k. 10 produce this outcome, the DTSF
scans the series to find the closest analogs xl[tw}. The subsequent
values of the time series are used as the forecast values:

YN+i = fxgw] (yt—w-‘ri) (3)

where fX[m] is a function which correlates the elements of
t

vector wa] and the elements of vector y!*l.

According to that, a first constraint can be set on k : 1 <
k < w. This constraint guarantees that if the most correlated
time series window comprises the most recent values, prior to
vector yl“!, then the forecast values are a function of vector

y[w] ,
(YN—wti)- “4)

As stated in Equations (3) and (4), forecast values depend
on the window length w and the function f (). A intuitive

Yn+i = S

proposal for function f ju) (.) is a linear scaling of the elements
t

of vector xgw], i.e., a linear model. This occurs due to the fact

that previous values are likely similar to the last observations,
except for a scale and/or offset shift. So, the method searches
for values that may be similar to the last values, after applying
a similarity function [26].
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Fig. 1. Illustration of the DTSF time series scan procedure.

By taking a linear function as the similarity function, the
parameters of the model can be estimated to minimize the
sum of squares between the elements of vector y/*! and the
linear equation: ﬂ([)t] + b’{t] X x,[:w]. Moreover, the similarity
statistic can be assumed as the linear regression coefficient of
determination R? [26], [32]:

= ()
=, (o)

RP=1- (5)

where yg-w] is the j-th value of vector y!*! and yg.w] is the j-

th predicted value using the estimated linear function. Finally,
the method calculates a similarity profile based on the R?
score resulting from the comparison of the query with previous
windows. The analogs with higher R? scores are considered
closer analogs. Predictions of future steps are calculated from
a predefined number of analogs using aggregation functions,
such as median [26].

The DTSF model requires three parameters to be selected
by the user: the length of the query window, the similarity
function specification, and the number of analogs to be con-
sidered. The original implementation of DTSF is available on
the R package, DTScanF. In the present study, the original
implementation is the extent to which the aggregation function
applied to analogs can be either the median or the mean,
according to the user or the model selection procedure.

Fig. 2 illustrates the forecasting procedure, using time
scanning in a given hourly time series, adopting a window
with a length equal to 48 hours, a linear similarity function
(degree equal to 1), and the three analogs. Windows 1, 2, and 3
are the ones most similar to the last window of available data.
The forecast is given by the median (but other statistics can
be used such as the mean) of the subsequential observations
of the analogs.
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Fig. 2. Example of DTSF application to forecasting a time series.
The three colored lines represent the top three analogs correlated to
the queried period. The dashed lines are the subsequent observations
of the analogs. The forecast is given by the median of the adjusted
forecast from the subsequent observations of the top analogs.

As a data-driven method, DTSF usually performs better
on time series with large numbers of observations and it
can also be extended to search the patterns of secondary
series related to the prediction. The main disadvantage of
the method is the computational cost of scanning the entire
time series and calculating the similarity profile. However,
more efficient methods, such as the Maureen’s Algorithm of
Similarity Search (MASS) which applies convolution, have
been applied for speeding up this task [27]. To keep it feasible,
the linear similarity functions commonly adopted are from the
first to the third-degree polynomials.

C. Statistical Forecasting Methods

A univariate forecasting method is a procedure for estimat-
ing a point. The forecast is based on past and present values
of a given time series [33]. This method is generally applied
when there is a large number of series to forecast, or when
multivariate methods require forecasts for each explanatory
variable. Given the advantage of simplicity and high usage,
univariate forecasting methods are employed in most of the
forecast applications in areas such as business, energy, and
finance. The following methods are selected from the latest
M4 competition benchmark [17], and a simple explanation is
given for each one, as follows:

1) Naive: the simplest, yet still powerful forecasting
method; assumes that the next steps to be predicted are
equal to the last available observation [20].

2) Seasonal Naive (sNaive): the same concept as Naive,
with the adaptation that the time series is deseasonalized;
method adjusted and forecast later, re-adjusted with the
seasonal component [20].

3) Naive2: each time series uses the forecast of either Naive
or sNaive, based on their score on the validation set.
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TABLE II
PARAMETERS RANGE ADOPTED FOR DTSF.
Parameters Range
Polynomial degree 1
Analogs 10
Window size 48
Aggregation function ~ Median

4) Simple Exponential Smoothing (SES): classic statistical
method which applies an exponentially weighted aver-
age [34].

5) Holt: exponential smoothing with level and linear trend
components [34].

6) Damped: exponential smoothing with dampened param-
eters for flattening trends, after a given period [35].

7) Theta: method based on a coefficient of curvature of the
time-series, applied to the second difference of the data
[36].

8) Combined (Comb): the simple average of the forecasts
of the previous three models: Holt, Damped and Theta.

9) ARIMA: general forecast method estimated from the

autoregressive, moving average and integration compo-

nents from the time series analysis [37].

ETS: automatic forecasting based on an extended range

of exponential smoothing methods [38].

DTSF: the proposed method, adopting the defined de-

fault parameters, which are: (i) polynomial function

degree equal to 1, (ii) analogs equal to 10, (iii) window
size equal to length of forecast horizon, and (iv) median

as aggregation function [26].

10)

11

Table II presents the range adopted for the parameters of
the proposed method. The polynomial degree is the degree of
the function used for approximation, analogs are the number
of analogs to be used to estimate the forecast, window size
defines the length of the scan window, and aggregation func-
tion is the one that transforms the projection of the analogs
into the final forecast.

D. Model Selection Procedure

The split of the data into training sets and test sets split is
predefined and given by the competition organizers. The data
come from different files for each of the time series domains.
The test set has a fixed horizon for all the time series, and
it is used only for computing the final scores. The evaluation
metrics adopted are the same ones that are applied in the M4
Competition, and are those most used in literature [39], [40]:
the Symmetric Mean Absolute Percentage Error (sMAPE),
Mean Absolute Scaled Error (MASE) and Overall Weighted
Average (OWA). The formula for calculating the metrics is
given:

h 2
1 2lY; - Y,
sMAPE = fZM (6)
h = | + V3]
h N
1(n— Y - Y,
MASEZﬁ(n nm)ztzl‘ t t| (7)
h Zt:m—&-l |Y;5 - }/t—m|

S]\fA.PE’k/S]\jA]‘?Ebas6 + ]\IASEWIC/]\4ASE’1,QSe

? ®)

where Y; is the post sample value of the time series at point

t, Yt is the estimated forecast, h is the forecasting horizon, m

is the frequency of the data, k is a given regressor, and base
is the sNaive estimator.

A hold-out cross-validation scheme is adopted to evaluate
and select the best parameters for the methods, in which the
last k observations are kept as the validation set, k being equal
to the forecast horizon. All possible parameter combinations
are enumerated within the defined ranges, and the methods are
tuned using an exhaustive grid search procedure with sSMAPE
as the scorer.

OWA=

E. Software and Hardware

Routines were implemented using the R 3.6.0 program-
ming language with the official benchmarks and evaluation
script of M4 Competition, available at the GitHub repository
(https://github.com/M4Competition/M4-methods). The Fore-
cast 8.7 package is used for the SES, Holt, Damped, ARIMA,
and ETS methods. DTSF comes from the official implemen-
tation of the method in R and C++, available from the public
repository (https://rdrr.io/github/leandromineti/DTScanF/). All
data and scripts are available from the authors upon request.

Computer specifications used to execute the algorithms and
calculate the forecasts are as follows: CPU 8-core Intel Core i9
2.3 GHz, 16 GB of RAM, and macOS 12.5 operating system.
Once the predictions are calculated, the error arrays are next
calculated and saved as RDS files, allowing analysis of the
results. Fitting time is computed from the time delta of the
system, before and after each execution of the methods.

III. RESULTS AND DISCUSSION

Table III presents the average sMAPE achieved by each of
the statistical methods and by the proposed method, computed
for each of the time domains. The Theta method achieved the
best scores for the yearly and monthly frequencies (14.603 and
13.003), which composed more than 70% of the total of the
series, thus contributing to this particular method outperform-
ing the other methods in the overall average (12.312). In the
individual domains, Comb achieved the lowest error for both
the daily (10.197) and the quarterly (10.197) domains, while
the ARIMA method scored the lowest error on the weekly
frequency (8.593).

The average error of all methods is the lowest for daily
frequency (close to 3.00), and there seems to exist a trend
toward increasing as the time domain becomes broader: the
weekly average error is around 9, the monthly is around 13,
and so on. The exception is for the hourly frequency, in which
most of the statistical methods scored errors from 13.912 to
43.003.

DTSF exhibited errors considerably fewer errors methods
considered for benchmarking in this particular kind of time
series (12.927). This makes the DTSF method interesting
for studying applications in which competitive estimators are
sought.
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Table IV presents the evaluation of the methods using OWA.
This metric is understood as showing how one method is more
accurate when compared to Naive2. If OWA is lower than 1
the method is more adequate than Naive2. Otherwise, Naive2
provides better forecasting performance. The DTSF scores for
the hourly series imply a meaningful increase in accuracy
over the Naive method (0.552). Moreover, when applying fine-
tuning, the gain increases to nearly 50%. For all other domains,
the only ones in which the method performed worse than
Naive2 were the yearly and the daily, both of which have
in common the longer term forecast period and the lowest
seasonality traits in common.

The outcome of the experiment can be explained by the
intrinsic design of the DTSF method, which was originally
conceived to deal with very long time series with recurrent
patterns, such as its original application to 30-min frequency
wind speed forecasting. Comparing results to Table I, which
presents the seasonality, length, and forecast horizon of each
time domain, it is shown that the DTSF accuracy is greater
when the number of available data points is also greater.

Fig. 3 displays the average sMAPE for each one of the
414 hourly time series available in the competition database,
listed in ascending order according to the calculated error
of the DTSF method. The methods Naive, sNaive and SES
methods were holdouts of the graphical representation. The y-
axis is presented using the base-10 logarithmic scale in order
to facilitate visual analysis.

2.0

0.5 1.0 1.5

log10(sMAPE)

0.0
|

-0.5
|

-1.0

ETS

T T T T T
0 100 200 300 400

Time Series

Fig. 3. Forecasting methods average sMAPE for each of the 414
hourly time series, ordered by the accuracy of the DTSF method.
The proposed method obtained fewer errors for most of the time
series in this particular domain of application.

In the first 170 time series with the lowest SMAPE — one-
third of the total available — the method proposed in the
present article achieved errors close to 10~2, while most of the
others obtained errors between 10°-® and 102. This shows the
enormous predictive power in this specific type of series, and

the great gain in accuracy that explains the best performance
of this method, on average. Analyzing the sets between the
170th and 300th time series with the smallest error, there is
less distinction between all the methods which, in general,
presented errors very close to each other. Other methods have
shown a lower errors than DTSF along all time series, specially
the methods ARIMA and ETS. In the set between 300th
and 414th, DTSF again marginally outperformed the other
benchmark methods in most of the series.

Table V presents the average sSMAPE detailed by the
forecast horizon, grouped by 6-hour periods. DTSF obtained
lower errors, for all horizons than the other compared methods.
Furthermore, the average error is 12.9%, and the highest errors
were obtained during the periods between the hours from 19
to 30 and the hours from 43 to 48.

To provide better visualization of error evolution over time,
Fig. 4 presents the mean errors per step of each method
(excluding the three from the previous figure), for all hourly
time series. An increase in error over time, according to the
phenomenon of error propagation, is expected. This is better
observed in the Holt method, in which error varied from 10%
at the first step to 40% at the last step. Moreover, in such
a visual representation, the Theta model is perceived to have
been more accurate, on average, than the DTSF model for the
Ist and 24th hours.

— Naive2
— -~ Holt
Damped ,=-
-~ Theta PR
Comb -
-- DTSF
ARIMA
ETS

40

35

30

sMAPE
25

15

10
|

Step

Fig. 4. Average SsMAPE (obtained in the 414 hourly time series by all
the methods for each step of the prediction, up to 48 hours — forecast
horizon).

Most statistical methods presented a pattern of very similar
curves, with the exception of the DTSF method. In DTSE,
the errors presented a different pattern, alternating peaks, and
valleys with the patterns of the other statistical methods. In
general, DTSF appeared to remain more stable throughout the
period, experiencing less of the error propagation effect and
not exceeding the limit of 20%. These are more examples that
explain the better performance of the DTSF method, compared
to the benchmark, in the hourly domain.
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TABLE III
THE PERFORMANCE OF DTSF COMPARED TO M4 BENCHMARK STATISTICAL METHODS — SMAPE METRIC.
sMAPE
Yearly Quarterly  Monthly ~ Weekly Daily Hourly  Average
Method (23k) (24k) (48K) (359)  (4227)  (414) (100k)
Naive 16.342 11.610 15.255 9.161 3.405 43.003 14.207
sNaive 16.342 12.521 15.994 9.161 3.405 13.912 14.660
Naive2 16.342 11.012 14.429 9.161 3405 18383  13.565
SES 16.398 10.600 13.620 9.012 3.405 18.094 13.089
Holt 16.535 10.955 14.833 9.706 3.070 29.474 13.839
Damped 15.162 10.243 13.475 8.867 3.063 19.277 12.655
Theta 14.603 10.312 13.003 9.094 3.053 18.138 12.312
Comb 14.874 10.197 13.436 8.947 2.985 22.114 12.567
ARIMA 15.150 10.408 13.486 8.593 3.185 14.081 12.679
ETS 15.356 10.291 13.525 8.727 3.046 17.307 12.725
DTSF 16.816 11.006 13.823 8.983 3.313 12.927 13.370
TABLE 1V
THE PERFORMANCE OF DTSF COMPARED TO M4 BENCHMARK STATISTICAL METHODS — OWA METRIC.
OWA
Yearly Quarterly Monthly  Weekly Daily Hourly  Average
Method  (23k) (24k) (48K) (359)  (4227)  (414) (100k)
Naive 1.000 1.066 1.095 1.000 1.000 3.593 1.072
sNaive 1.000 1.153 1.147 1.000 1.000 0.628 1.106
Naive2 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SES 1.003 0.970 0.951 0.975 1.000 0.990 0.970
Holt 0.956 0.935 0.989 0.964 0.997 2.760 0.976
Damped 0.888 0.893 0.924 0.916 0.996 1.140 0.912
Theta 0.872 0.917 0.907 0.971 0.999 1.006 0.906
Comb 0.868 0.891 0.920 0.926 0.979 1.559 0.906
ARIMA  0.891 0.898 0.904 0.927 1.041 0.950 0.906
ETS 0.903 0.890 0914 0.931 0.996 1.824 0.913
DTSF 1.002 0.961 0.950 0.914 1.092 0.552 0.969
TABLE V
AVERAGE SMAPE OBTAINED IN THE 414 HOURLY TIME SERIES BY THE PREDICTED STEPS, GROUPED IN 6-HOUR
PERIODS.
Steps
Methods 1-6 7-12 13-18 19-24  25-30 33-36 3742 43-48 1-48
Naive2 16.3 20.1 18.8 15.7 18.2 20.7 19.3 18.0 18.4
Naive2 16.3 20.1 18.8 15.7 18.2 20.7 19.3 18.0 18.1
Holt 15.7 23.0 27.1 27.5 29.9 349 37.9 39.8 29.5
Damped 15.5 20.3 20.5 17.5 18.1 21.2 21.2 19.9 19.3
Theta 16.1 19.9 18.5 153 17.8 20.5 19.2 17.8 18.1
Comb 156 206  21.8 19.7 20.8 24.9 26.7 268 221
ARIMA 14.2 114 11.2 15.8 154 139 134 17.0 14.1
ETS 13.6 16.5 16.4 16.6 16.5 19.0 18.9 174 17.3
DTSF 12.6 10.7 10.2 15.0 14.8 11.6 11.6 11.6 129
Table VI shows the time necessary to fit the methods for TOTAL AND AVERAGE TII/[AEPS’II\J]?E;]EISSARY FOR FITTING THE
all of the 100,000 time series. The methods Naive2 and Comb METHODS
have been omitted as these two are a combination/selection ’
of individual methods. Total fitting time is given in seconds, Methods  Total fitting time _ Average  time  Ratio to naive
while the average time per series is given in microseconds. The (©) per series (ms)

. . . . Naive 0.458 1.106 1.00
Ratio Naive column compares the average time of a particular <Naive 0.656 1584 43
method compared to the execution time of the Naive method. SES 2219 5.360 4.85

Holt 5.947 14.365 12.99
Damped 12.789 30.892 27.94
Theta 2.964 7.159 6.47
ARIMA 18437.598 44535.261 40278.22
DTSF was the method that consumed the most compu-  ETS 1838.638 4441.155 4016.63
DTSF 6.241 15.074 13.63

tational time, almost 9 times more than Naive. It is worth
mentioning that the default parameters for DTSF adopt 10
analogs to estimate the forecast. Also, part of the method is
executed in the C compiled language, and part of it is executed
in R.
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IV. CONCLUSIONS

The current paper presents the results of applying the dy-
namic time scan forecasting method with the M4 competition
data and compares it with statistical methods used as baselines
in the same competition. The results point to a significant gain
in accuracy in hourly time domain problems, compared to the
reference, which justifies adopting this method for problems
of this particular nature.

Since the method was developed for problems with long
time series and high repeatability, DTSF has been proved
competitive. In the present experiment, the DTSF method
reduced the sSMAPE by 12.13%.

Furthermore, the dissemination of this method may be
interesting for other researchers who wish to extend it to
existing methods, either by combining it with other techniques
or by adapting its operation to other applications.

Future research should extend the method to multivariate
forecasting problems and hierarchical time series and should
assess its performance in other applications with this character-
istic (the M5 competition, for instance). Also, some extensions
of the method itself are foreseen, in order to improve its
accuracy on time series for which its performance was less sat-
isfactory than the performance of other statistical methods, for
example, adopting k-fold instead of hold-out cross-validation
for model selection [41].
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