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Abstract—Breast cancer in women is a worldwide health problem 

that is one of the main causes of death. This situation is accentuated 

in Latin America and the Caribbean countries, where about 159 

women die daily from this disease. The World Health Organization 

recommends focusing on Prevention and Early Detection of cancer 

to reduce mortality. However, this requires a great deal of 

information processing and analysis by experts, who require the 

support of technology to perform these tasks promptly. In recent 

years, the use of so-called intelligent algorithms has increased to 

support the fight against breast cancer. The authors summarized 

the studies published between January 2016 and June 2021, 

highlighting the current situation and opportunities for Latin 

America and the Caribbean. Studies were selected using the 

following terms: intelligent algorithms, assessment metrics, stages 

of breast cancer control addressed, data sources, data types, female 

population with breast cancer under study and the countries of the 

authors who have written articles on this subject. 

In this study, after applying the inclusion and exclusion criteria 

226 articles were selected from a total of 1,105 articles found in the 

ACM digital library, IEEE Explore, Nature, PubMed, Scopus 

(Science Direct) and Springer Link databases. Publication between 

January 2016 and June 2021, breast cancer as main interest, 

algorithm and data type information, along with compliance with 

the general question were the inclusion criteria, while, being a 

research article, compliance with the three subqueries and 

availability, were the exclusion criteria. Using a spreadsheet as 

based tool to collect and analyze the data, the study found that the 

most used elements were: SVM, RF and DT algorithms; accuracy as 

assessment metric; public information sources; data on tumors (size 

and shape, among others); USA information sources; India as the 

country of the first authors who wrote the most articles of the 

selected papers; and Diagnosis & Treatment as the most addressed 

stage of cancer control. 

Results in this review paper provide an overview of the application 

of intelligent algorithms against breast cancer. In this regard, the 

gaps that were detected are: the Prevention stage of cancer control 

has not been addressed with intelligent algorithms, and the Early 

Detection stage has been very little addressed; private data sources 

could be beneficial in this type of research, but the difficulty in 

accessing them is a barrier for researchers. In addition, although 

Latin America and the Caribbean have a significant death rate from 

breast cancer, patients in this region have not been the subject of 

study and the participation of researchers on the subject has been 

almost nonexistent. Finally, there seems to be a great opportunity to 

generate proposals based on intelligent algorithms with low cost and 

time to implement that could directly impact patient survival, 

improving the health systems of the countries in the region. 

 
Index Terms—Artificial intelligence, Machine learning, Breast 

cancer, Review. 

I. INTRODUCTION 

Cancer is a disease characterized by the transformation of 

cells, which proliferate in an abnormal and uncontrolled 

manner. The human body is made up of trillions of cells that 

grow, divide in an orderly fashion and reproduce throughout its 

life. Cells age and die at some point. When cells die or abnormal 

cells exist, the human body functions differently [1]. 

This malfunction at the cellular level can originate in any part 

of the body. The kind of cancer will depend on the part of the 

body where it originated. Thus, breast cancer is the malignant 

proliferation of epithelial cells lining the ducts or lobules of this 

gland [2]. 

According to the International Agency for Research on 

Cancer of the World Health Organization [3], there were more 

than two million new cases of breast cancer worldwide and 

about 685 thousand deaths only in 2020. Breast cancer is the 

type of cancer with the highest incidence and mortality in 

women worldwide and represents a public health problem. 

In the United States of America (USA), the incidence of 

breast cancer in 2020 was 281,591 cases and mortality of 

48,407 deaths. For the same year and the same type of cancer, 

in Latin America and the Caribbean (LAC) the statistics were 

210,100 new cases and 57,984 deaths, which means that about 

159 women die daily from this disease [3]. In the USA more 

cases are detected, but the mortality rate is lower than in LAC. 

Furthermore, in LAC there are health inequities and limited 

access to treatment [4]. 

As a strategy to reduce breast cancer mortality, countries 

with high-income economies have adopted prevention 

programs (early diagnosis and screening) and improved 

treatments [5]. It is worth highlighting the existence of a breast 

cancer risk estimation tool endorsed by the government and 

health agencies of the USA [6]. 

Due to the magnitude of these numbers, several research 

groups have focused on applying alternative risk estimation 

tools to the existing ones, as a support for the different stages in 

the fight against this disease. One of the tools that has gained 

momentum in recent years is the application of intelligent 

algorithms. For this purpose, data sets are compiled on people, 

both with and without the disease. From these data, models 

based on intelligent algorithms are created and validated to 

carry out different tasks such as risk prediction and prognosis 

of treatment success, among others. 

In this review work, primary information sources were used 

to search for scientific papers dealing with algorithms against 

breast cancer. More specifically, identifying which algorithms 

are being used the most, the data types these algorithms are 

acting on, where the data sets come from, the metrics used to 

validate the algorithms, the stages of cancer control they are 
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addressing, the population under study, and from which 

countries the publications come from. 

II. RESEARCH METHODOLOGY 

In this research, the review was conducted under the PICO 

(Participants/Population, Intervention, Comparison, Outcomes) 

strategy [7], where the target population is the set of women at 

risk of breast cancer, either with a positive or negative 

diagnosis; the Intervention was defined for the intelligent 

algorithms used in Machine Learning; the Comparison is given 

by the estimation of breast cancer risk and the prediction of 

breast cancer. The Outcomes were not included because this 

work represents exploratory research that does not consider any 

measurable result in this regard. 

The PRISMA methodology for systematic review (SR) as 

used as based for this study [8]. A SR is the review of a set of 

well-formulated questions. SR uses systematic and explicit 

methods for a dual purpose: to identify, select and critically 

assess relevant research; and to collect and analyze data from 

the selected studies. This methodology includes the following 

steps: definition of research objectives or questions, selection 

criteria, information sources, search strategy, studies selection, 

and data collection [8]. Each of these steps is discussed below. 

 

 

A. Objectives of the Review 

The general objective of this research was to identify which 

intelligent algorithms have been used in the last five years to 

support the fight against breast cancer in women, as well as the 

data sources used. Considering the previous objective and the 

PICO strategy, seven questions were elaborated, which are 

shown in Table I. 

 

B. Information Sources 

Six of the main online databases were selected as information 

sources for this research, which is shown in Table II. 

 

 

C. Search Strategy 

The search strategy consisted of elaborating the search 

phrases; then elaborating subqueries for each PICO element, 

excluding the output; and finally, elaborating the general query. 

Search phrases. The search phrases, shown in Table III, 

were elaborated by grouping the Review questions (Table I) 

according to the first three PICO elements and joining them 

with the logical operator "OR". 

Queries. Queries were created from the search phrases, using 

the "AND" operator to group the phrases in each column of the 

PICO strategy. 

Q2 query uses the concepts by which intelligent algorithms 

are usually grouped, since querying each and every algorithm 

by name is not feasible. 

 

 
 

The general query (GQ) was constructed with SQ1, SQ2 

and SQ3 sub-queries: 

GQ: (“breast cancer”) AND  

(“artificial intelligence” OR “machine learning” OR 

 “data mining” OR “pattern recognition”) AND 

 (“risk estimation” OR “prediction”)         

 

D. Eligibility Criteria 

The characteristics considered in this study to select the 

articles are shown as inclusion and exclusion criteria in Table 

IV. 

 

TABLE I 

REVIEW QUESTIONS 

ID Question Purpose 

RQ1 

What intelligent algorithms are 

being used for risk estimation 

or breast cancer prediction? 

To discover the most widely 

applied algorithms to support 

the fight against breast cancer. 

RQ2 

What are the main metrics for 

assessing intelligent 

algorithms? 

To know the most commonly 

used metrics to assess 

algorithms. 

RQ3 

What stages of breast cancer 

have been addressed with 

intelligent algorithms? 

To discover what stages of 

breast cancer control from the 

WHO have been addressed the 

most. 

RQ4 

What are the data sources that 

these intelligent algorithms are 

consuming? 

To determine the information 

sources that provide the data 

sets that train intelligent 

algorithms. 

RQ5 

What kind of data (data, 

images, genetic tests) do these 

intelligent algorithms operate? 

To identify the main data 

types that researchers have 

used. 

RQ6 

What female populations with 

breast cancer have been studied 

with these intelligent 

algorithms? 

To know the main female 

populations that have been the 

subject of the study. 

RQ7 

From which countries are the 

selected research articles being 

produced? 

To discover the countries that 

are generating the most 

research articles on this topic. 

 

TABLE II 

INFORMATION SOURCES 

ID Database Name 

ACM Association for Computing Machinery. 

IEEE Institute of Electrical and Electronics Engineers. 

Nature Nature. 

PubMed Public/Publisher MEDLINE (National Library of Medicine). 

Scopus Elsevier (Science Direct). 

Springer Springer Link. 

 

 

 

TABLE III 

SUBQUERIES 

Phrase P I C QueryID Subquery 

“breast cancer” •   SQ1 “breast cancer” 

"artificial 

intelligence" 
 •  

SQ2 

"artificial intelligence" OR 

"machine learning" OR 

"data mining" OR 

"pattern recognition" 

"machine 

learning" 
 •  

"data mining"  •  

"pattern 

recognition" 
 •  

"risk 

estimation" 
  • 

SQ3 
"risk estimation" OR 

"prediction" 
"prediction"   • 
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E. Study Selection 

On July 20, 2021, the GQ was performed directly on the 

websites of the information sources (Table II), and because 

each of them offers different ways of filtering the results, the 

GQ was applied with variations in the filters (Table V). 

 

 

 

F. Data Collection Process 

In order to collect the information from the selected articles, 

a container was created as an electronic spreadsheet. The PICO 

structure, excluding the Observation as mentioned before, and 

the review questions were considered to elaborate the 

information container. Table VI shows the container structure, 

including the relation between columns and the PICO strategy 

and Review Questions. The container was filled out by one 

researcher, reviewed by three others, and the inconsistencies 

detected were reviewed among the four researchers in working 

meetings in order to reach an agreement about it. Found 

discrepancies were mostly about mistakes along the review 

process by one or another researcher, only few divergences 

about some of the algorithm's families needed further 

discussion among the whole team, however, there was no need 

for external consultants. 

 

G. Data Items 

Each row of the information container represents a selected 

publication, where each column corresponds to the elements 

presented in Table VI. The mapping of the articles to each row 

of the container was performed by the first author, while the 

review was conducted by the remaining authors. 

H. Risks of Bias in this Work 

Individual studies selection bias. In order to reduce bias in 

the selection of studies, a query chain (GQ) was generated. 

First, phrases were generated based on the PICO strategy. Then, 

subqueries were constructed with these phrases. Finally, these 

subqueries were taken to create the GQ. 

Risk of data extraction bias. On the other hand, inclusion 

and exclusion criteria were established before the search was 

performed. Both processes were agreed upon by four 

researchers through virtual meetings. 

 

 

I. Data Extraction Bias 

To reduce bias in the data extraction from the selected 

articles, data extraction was performed by one researcher 

independently and reviewed by the other three researchers, also 

independently. Differences were discussed and agreed upon in 

virtual working meetings. Due to the different ways in which 

databases perform searches internally, it was necessary to verify 

the articles found. The verification consisted of developing a 

search within the container, in the title and abstract columns. 

The goal was to ensure that at least one of the phrases of each 

PICO element (Table III) was present in the article’s title or 

abstract. The functions of the spreadsheet itself were used for 

this internal search. 

III. OUTCOMES 

A. Study Selection 

Fig. 1 shows the phases of study selection [8], when 

consulting the information sources (Table 2). 

TABLE IV 

INCLUSION AND EXCLUSION CRITERIA 

ID Inclusion Criteria 

IC1 Published between January 1, 2016 and June 30, 2021. 

IC2 Addresses breast cancer as the main disease. 

IC3 Reports the algorithms used. 

IC4 Reports the type of data used by the algorithms. 

IC5 Complies with the GQ. 
  

ID Exclusion Criteria 

EC1 The article is a review, a thesis, poster, editorial, book, publisher. 

EC2 None of the SQ1 terms appear in the article abstract. 

EC3 None of the SQ2 terms appear in the article abstract. 

EC4 None of the SQ3 terms appear in the article abstract. 

EC5 The complete article is not available for consultation. 

 

TABLE V 

FILTERS USED IN THE INFORMATION SOURCES 

DB Filters 

ACM Publication Date: (01/01/2016 TO 06/30/2021) 

IEEE Year: 2016-2021 

Nature 

Journal: Scientific Reports, British Journal of Cancer 

Article type: Research; Subject: Computational biology and 

bioinformatics; Date: 2016-2021 

PubMed 
Text availability: Full Text; Article type: Journal Article; 

Publication year: From 2016/1/1 to 2021/6/30 

Scopus 

Publication year: 2016-2021; Document type: Article; 

Subject area: Computer Sciences; Source type: Journal, 

Conference Proceedings 

Springer 
Content type: Article, Conference paper; Discipline: 

Computer Science; Date published: Between 2016 and 2021 

 

 

TABLE VI 

STRUCTURE OF THE INFORMATION CONTAINER 

     Review Questions 

Column Name AId P I C 1 2 3 4 5 6 7 

Title •           

Doi •           

Date •           

Abstract •           

Keywords •           

Database •           

Breast cancer  •          

Artificial 

intelligence 
  •         

Machine learning   •         

Data mining   •         

Pattern recognition   •         

Risk estimation    •        

Prediction    •        

Algorithm     •       

Metrics      •      

Stage       •     

Data source        •    

Data type         •   

Population          •  

Nationality           • 

AId = Article Identification 

 



 
VALENCIA-MORENO et al.: REVIEW OF INTELLIGENT ALGORITHMS FOR BREAST CANCER                  229 

The queries of the six databases returned 1,105 records. When 

the selection process was applied, only 226 were selected to be 

included in this study (Fig. 1). 

 

 
 

The distribution by year of publication is shown in Fig. 2. The 

general trend is that more and more articles are being published 

each year on the application of intelligent algorithms to support 

the fight against breast cancer. For 2021, this study only 

contemplates articles published in the first six months, this 

partial result does not allow to confirm the tendency from the 
previous four years, however, the number of papers identified 

seems to be growing since 2017. 

 

B. Algorithms 

The study identified 44 different algorithms among the 226 

articles analyzed. The 10 most frequently used algorithms are 

presented in Fig. 3, where the first seven stand out for their 

percentage of use: SVM (54.4%), RF (43.4%), DT (40.3%), 

kNN (34.1%), NB (32.3%), LR (31.9%) and NN (22.1%). 

 

 
 

 
 

Table VII lists the 44 algorithms identified and their 

respective percentages of occurrence, some algorithms were 

grouped by this percentage. For example, there were two 

algorithms that obtained a percentage of 10.2% (ANN and 

MLP), four algorithms with 0.9% each and eleven algorithms 

with 0.4%. 

 

 
Fig. 1. Process of article selection under the PRISMA proposal [8]. 
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Fig. 2.  Distribution of selected articles over the years. 

15
8

32

62

75

34

2015 2016 2017 2018 2019 2020 2021 2022

 
Fig. 3.  Top 10 algorithms used in the fight against breast cancer. 
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TABLE VII 

INTELLIGENT ALGORITHMS 

Algorithms Percentage 

Support Vector Machine (SVM) 54.4% 

Random Forest (RF) 43.4% 

Decision Tree (DT) 40.3% 

k-Nearest Neighbors (kNN) 34.1% 

Naive Bayes (NB) 32.3% 

Linear Regression (LR) 31.9% 

Neural Network (NN) 22.1% 

Artificial Neural Network (ANN), Multi Layer 

Perceptron (MLP) 
10.2% 

Extreme Gradient Boosting (XGBoost) 8.4% 

Adaptive Boosting (AdaB) 8.0% 

Gradient Boosting (GBT) 7.1% 

C4.5 y C5.9 (C5.0), Ensemble learning (Ensemble) 4.0% 

Bayesian Network (BN) 4.4% 

Classification and Regression Trees (CART) 3.1% 

Fuzzy logic (Fuzzy), Fisher’s Linear Discriminant (FLD) 3.5% 

Genetic Algorithm (GA) 1.8% 

k-Means clustering (k-means), Instance Based Learner 

(IBK), Least Absolute Shrinkage and Selection Operator 

(Lasso), One Rule (OneR) 

0.9% 

Expectation Maximization (EM), Gradient Descent 

(GD), Kernel Ridge Regression (KRR), Latent Dirichlet 

Allocation (LDA), Partitioning Around Medoids (PAM), 

Particle Swarm Optimization (PSO), Radial Basis 

Function (RBF), Rule-based (Rule), Sequential Minimal 

Optimization (SMO), Self-Organizing Maps (SOM) 

1.3% 

Artificial Hydrocarbon Networks (AHN), Autoencoder 

(AE), Bat algorithm (Bat), Class Attribute 

Interdependence Maximization (CAIM), ChiMerge 

(ChiM), Coherent Voting Network (CVM), Extreme 

Learning Machines (ELM), GoogLeNet (GN), 

Gravitational Search Algorithm (GSA), Kernel 

Algorithm (Kernel), Repeated Incremental Pruning to 

Produce Error Reduction (Ripper) 

0.4% 
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The algorithms were organized into families, considering 

their performance, and calculating their percentage of use 

within the total number of articles analyzed. The algorithm 

families created were Artificial Neural Networks (ANN), Bio 

Inspired and Evolutionary Algorithms (BIO), Bayesian 

Networks (BN), Boosting (BS), Clustering (CL), Dimensional 

Reduction (DR), Decision Tree (DT), Ensemble (EN), Fuzzy 

(FZZ), Rule Base (RB), Regression (RGR), Kernel (Kernel). In 

Fig 4 the families and their algorithms are presented. 

The involvement of intelligent algorithms in the stages of 

breast cancer control can be seen in Fig. 5. The use of SVM 

predominates in the stages of Diagnosis & Treatment and 
Palliative Care. While in the Early Detection stage the most 

used algorithms were RF and LR. 

 

 
 

C. Performance 

Within the selected articles, Accuracy is reported as the most 
used performance metric with 75.7%. This is consistent with 

previous studies that report the use of the same metric in 72% y 

93.5% identified by [9] and [10] respectively. 

In second place ranked AUC with 15.5%. The Other category 

came in third place with 7.1%, which groups metrics reported 

in a single article: Sum Squared Error (SSE), Root Mean 

Squared Error (RMSE), symmetric Mean Absolute Percentage 

Error (sMAPE), Pearson's distance, Matthews' correlation 
coefficient (MCC), mean average precision (mAP), negative 

binomial odds ratio, sensitivity, specificity, kappa coefficient, 

p-value and regions of interest (ROI).  Precision and F1 ranked 

fourth with 0.9% each. 

 

D. Stages of Cancer Control 

The World Health Organization (WHO) proposed a model for 

cancer control, consisting of the following stages: Prevention; 

Early Detection; Diagnosis & Treatment; and Palliative Care 

[12]. 
For this study, the early diagnosis, risk prediction, risk 

estimation with saliva biomarkers and risk assessment terms, 

were included in the Early Detection category. The Diagnosis 

& Treatment category considered the terms: diagnostic, 

diagnosis, cancer staging, prognosis, drug discovery, 

chemotherapy, tumor classification, treatment, prediction of 

metastasis, subtype identification, stratify patients for 

treatment, metastasis prediction, response to drug prediction, 

prediction of molecular subtypes of breast cancer, response or 

sensitivity of a drug, therapy and therapeutic. Under Palliative 

Care category, the following terms were included: survivability, 

recurrence, survival, tumor progression and survivability 
prediction. Fig. 6 shows the percentage of selected articles 

addressing each of these four stages of cancer control. 

 
 

E. Information Sources 

The information sources reported in the selected articles were 

grouped into three categories: public, private and NA. Public is 

the category that includes information sources available on the 

Internet for public consultation. The Private category included 
datasets that are not accessible to the public, typically data 

obtained from internal projects. In the NA category 6 articles 

were included, 4 of them did not report their data source, one 

article reported "experimental dataset" and another one reported 

"simulated datasets".  

Table VIII presents the three categories, the name of the 

database in the case of public data sources and in the case of 

private sources, the names of the organizations containing the 

data. The percentage for each source and for each category is 

also shown. 

 

 
Fig. 4. Algorithm families, their members and percentage of use. 
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Fig. 5. Main algorithms that address the stages of cancer control. 
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Fig. 6. Stages of cancer control and percentage of selected articles that address 

them. 
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Public data have been used by the majority of the selected 

articles representing 58.8%, while private data were used in 

38.5% and 2.7% did not report their information source. 

 

F. Data Types 

The data types were grouped into the following categories: 

blood analysis, clinic-histopathological, genetic, images, risk 
factors, tumor and other. Blood analysis is the analysis 

performed on patients, where a sample of their blood is taken. 

Clinic-histopathological category grouped the following data: 

demographic data, physical examination, pathology, laboratory 

test data and biopsies. The Genetic category consisted of gene 

expression data, RNA sequencing, tumor tissue microarrays, 

expression array, protein sequence, genomic profiles and gene-

based signatures. The Images category grouped digital 

mammography, magnetic resonance imaging (MRI) and 

computed tomography datasets. Tumor is the category that 

groups the features extracted from tumors, usually from 

mammography. 
Risk Factors are those factors that increase the risk of a person 

suffering from a certain disease [13]. The Tumor category 

groups the data that characterize the identified tumor, not the 

image itself, but the data obtained from that image where there 

is a tumor, as well as the characteristics of the biopsies that have 

been performed. In some cases, two data types were reported, 

such as genetic data and risk factor data; or risk factors and 

diabetes data. 

The most used data type was the tumor category with 44.2%, 

followed by the images category with 21.1%, as shown in Fig. 

7. Fig. 8 shows the frequency of data types according to the 

stages of cancer control. Tumor, Images, Blood analysis, 

Clinical histopathology and Genetic data types were used to 
support the Diagnosis & Treatment stage. 

  

 

 

G. Population of Data Sources 

The data sources of the selected articles were examined in 

order to know the populations studied. For private sources, the 

country of the institution that provided the dataset was 
considered. For the six selected articles that did not report the 

source of their datasets, four reported the country of origin of 

data and two did not, therefore, of the 226 cases, the source is 

unknown for only 2 articles. 

For public data sources, the country of the main donor of the 

dataset was considered. As a result, thirty-two different 

countries were identified and two articles did not report the 

country of origin (Table IX). The 11 countries with the highest 

frequency are shown in Fig. 9. USA stands out with 54.9%, 

which means that 54.9% of the selected articles studied a breast 

cancer data from a population belonging to the USA. China 
comes in second place, with 9.3%, and Portugal with 4.4% was 

in third place. 

 

TABLE VIII 

INFORMATION SOURCES 

Type Dataset/Organization % Total 

Public 

Breast Cancer Coimbra Data Set 3.1 

58.8% 

Breast Cancer Data Set 0.9 

Breast Cancer Digital Repository (BCDR) 0.9 

Breast Cancer Histopathological Image 

Classification (BreakHis) 

2.7 

Breast Cancer Surveillance Consortium 

(BCSC) 

0.4 

Breast Cancer Wisconsin Data Set  

(Diagnostic, 13.7%), (Original, 18.6%), 

(Prognostic, 2.7%) 

35.0 

European Molecular Biology Laboratory 

(ChEMBL) 

0.4 

Digital Database for Screening 

Mammography (DDSM) 

0.4 

Drugbank 0.4 

Gene Expression Omnibus (GEO) 2.2 

Genomic Data Commons (GDC) 0.9 

ISPY1 0.9 

Mammographic Image Analysis Society 

(MIAS) 

0.4 

Mammographic Mass Data Set 0.9 

Molecular Taxonomy of Breast Cancer 

International Consortium (METABRIC) 

1.3 

Surveillance, Epidemiology, and End 

Results (SEER) 

1.8 

The Cancer Genome Atlas (TCGA) 6.2 

Private 

Cancer Registry 1.3 

38.5% 

Hospital 17.3 

Institute 3.1 

Medical Center 3.1 

Medicine School/University 10.2 

Organization 0.4 

Research Center 3.1 

NA Not Available 2.7 2.7% 

 

 
Fig. 7. Data types categories and the percentage of articles that reported their 

usage. 
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Fig. 8. Data types used in each stage of breast cancer control, including the 

number of articles for each combination. Thus, the data type Tumor was 

reported by 2 articles for Early Detection, by 83 for Diagnosis & Treatment and 

by 15 for Palliative Care. 

2 2 1 1 2 7 2

83

46

14
8

29
1

4

15

11

5

3

Tumor Images Clinico

histopathological

Blood analysis Genetic Risk Factors Other

Prevention Early detection Diagnosis & Treatment Palliative care



232                   IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 2, FEBRUARY 2023 
 

 

 
 

H. Affiliation Country of the First Author 

The countries of the first author were obtained from the 

affiliation provided by the first author of each selected article. 

43 different countries were identified, as shown in Table X. 

 

 

IV. DISCUSSION 

In this research were identified 226 articles published in the 

period from 2016 to 2021, which report the use of intelligent 

algorithms in support of the fight against breast cancer. Those 

articles were analyzed considering 7 RQs, with their 

corresponding purposes, and in this section the main findings 

related to each RQ are discussed. 

 

A. Algorithms 

The most commonly used algorithms in this investigation 

were SVM, DT and RF [9][10]. A large percentage of SVM was 

used with tumor data (44.72%) and image data (21.95%). Some 

of the advantages of SVM are that it is used in classification and 

regression problems, in addition to reducing the overfitting of a 

model and the negative effects of high dimensionality [9]. 
Meanwhile, RF was mainly used with tumor data types 

(45.92%) and genetic data (23.47%). On the other hand, DT 

seems to be a combination of the two previous algorithms, since 

it was more used for the analysis of tumor data type (53.85%) 

and image and genetic data types (15.38% and 13.19% 

respectively). In addition, RF and DT are among the most used 

algorithms in the Early Diagnostic stage (Fig. 5), applied to 

Risk Factor data types (Fig. 8). RF and DT are widely used 

algorithms since their results are easy to interpret which has 

given them a wide and diversified user base, in addition to the 

fact that they are easy algorithms to implement in a system 
within the medical environment [9]. 

 

B. Performance 

Accuracy was the main metric used in the analyzed articles 

with 75%, which coincides with the 72% and 93.5% identified 

by [9] and [10] respectively. In similar studies, accuracy is 
reported within the confusion matrix, which also contains the 

false positive (FP) and false negative (FN) rates [9-11, 15]. 

Both FP and FN are metrics for measuring the performance of 

intelligent algorithms, but even more important, they are 

fundamental indicators in computational applications for 

medical decision support. FPs can generate extra psychological, 

physical and economic costs for patients, while FNs can cause 

late-stage diagnoses and even patient death associated with 

medical malpractice [11, 15]. Some previous systematic review 

works highlighted the usage of FN rate within the performance 

measures of their selected articles, in 3 out of 193 articles for 

[9], and in 1 out of 31 articles for [10]. The use of False 
Negatives not highlighted in [9], while [10] only reported its 

usage for 1 of 31 analyzed articles. 

 

C. Stages of Breast Cancer Control 

According to the results obtained in this work (Fig. 5), RF, 
DT and LR algorithms have been mostly reported for the Early 

Diagnostic stage by using risk factor data types (Fig. 8).  This 

combination of intelligent algorithms and data types is ideal for 

application in the early stages of cancer control. Resulting in a 

viable solution, with high impact due to its possible 

contribution to reducing the mortality rate [15] and low cost in 

its implementation, not only for the patient, but also for the 

family and public health systems, especially in developing 

countries [9]. Therefore, solutions of this type are of vital 

importance for the Prevention and Early Diagnostic stages in 

countries such as those in Latin America, where breast cancer 

TABLE IX 

COUNTRIES OF DATA SOURCES 

Countries Percentage 

USA 54.9% 

China 9.3% 

Portugal 4.4% 

UK 3.1% 

Brasil, Canada, South Korea 2.6% 

Finland, Taiwan 1.8 % 

Germany, Iran 1.3 % 

Australia, France, India, Italy, Netherlands, Spain, 

Sweden, Switzerland, Yugoslavia, NA* 
0.9 % 

Cuba, Greece, Indonesia, Ireland, Japan, Malaysia, 

Morocco, Nigeria, Norway, Pakistan, Palestine, Turkey 
0.4 % 

Countries of the public dataset donors and of the institutions that provided 

the private datasets. * Not Available. 

 
Fig. 9. Top 11 countries that provided data sets. 
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TABLE X 

COUNTRIES OF THE FIRST AUTHORS 

Countries Percentage 

India 19.5% 

China 14.1% 

USA 10.1% 

Bangladesh 4.4% 

Canada, South Korea 4.0% 

Australia, Germany, Iran, Italy, Taiwan 2.6 % 

Turkey 2.2% 

France, Morocco, Saudi Arabia, Sweden 1.8 % 

Finland, Indonesia, Malaysia, Pakistan, Spain 1.3 % 

Brazil, Greece, Israel, Japan, Jordan, Mexico, 

Netherlands, Nigeria, Norway, Philippines, Portugal 
0.9 % 

Bulgaria, Egypt, Iraq, Palestine, Pradesh, South Africa, 

Tanzania, Thailand, United Kingdom, Vietnam, Yemen 
0.4 % 

First authors affiliation country of the selected articles. The forty-three 

countries are grouped by percentage of incidence. 
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detection is carried out in late stages [14] and where the 

economic burden is significant. 

 

D. Information Sources 

Public datasets were used by 133 (59.0%) of the articles 

analyzed in this work. Of these, the largest provider was the 

University of California, Irvine (Diagnostic, Original and 

Prognostic) used by 79 articles, that is, 59% of the public 

datasets [9][16].   

Considering other previous review works, our result of 59% 

utilization of public datasets is comparable to the 56% of [17] 
and slightly higher than the 48% [11] but below the 71% of 

[10]. However, one must have to consider the approach of 

previous reviews, where [11] is focused on the use of imaging, 

[17] on recurrence, and [10] on patient survival. That is, the 

approaches are not homogeneous enough to allow us to make a 

more equitable comparison. Regardless of the approaches, the 

fact remains that public information sources allow research to 

be conducted, especially at the diagnostic and treatment stage 

(Fig. 4) [9]. The lack of public information sources, or their 

decreasing proportion in comparison to the private ones, can be 

seen as a constraint for a greater number and diversity of 
research works against breast cancer that take into account the 

different features of women around the world. 

 

E. Data Types 

The data types mostly used in this study were tumor and 

image, which together account for 65.4% (Fig. 7), which are 
mainly applied in the Diagnosis & Treatment stage (Fig. 8) [11] 

and, according to Fig. 5, are mainly used by the SVM, DT and 

RF algorithms. On the other hand, data about the risk factors is 

generally already in the clinical records of patients, so their 

analysis with intelligent algorithms would be potentially viable 

for developing countries such as those in Latin America and the 

Caribbean, in contrast to the use of specialized instruments that 

are expensive to acquire and maintain. The first step to take 

advantage of the risk factor data type would be to have available 

digital risk factors datasets of breast cancer patients, since in 

this study only 8 articles that used risk factors were identified, 

of which 6 data sources were private, 1 used a public dataset 
(BCSC) and 1 did not report the source. 

 

F. Population of Data Sources 

Gail's model, originally created in 1989 from the existence of 

a large amount of data on breast cancer patients of women in 
the USA, has given rise to the creation of an online tool [6], 

promoting breast cancer prevention and early detection, thus 

helping to reduce the mortality rate in that country [5]. In fact, 

this study revealed that 54.9% of the selected articles have used 

a US data source either public or private (Table IX), in other 

words, the US female population is the most studied population 

and has served as the basis for recent research. Unfortunately, 

this study found no evidence of the existence of any public 

dataset of Latin American women born outside the USA that 

could be used for this type of research, and help to create a 

culture of Prevention and Early Diagnosis of breast cancer in 

Latin America and the Caribbean, whose objective would be to 

reduce the mortality rate from this cancer. 

 

G. Affiliation Country 

Within the three main affiliation countries of the first authors 

of the selected articles (Table X), two countries have a public 

tool for estimating breast cancer risk based on their populations, 

China [18] and USA [6], while in the case of India, which 

ranked first with 19.5% in this review, no such tool was found 

to exist. 

On the other hand, of the 226 articles selected, there were only 
4 whose first authors were from Latin America and the 

Caribbean, 2 from Brazil and 2 from Mexico [19-244]. This 

could suggest, among other things, the lack of risk factors 

public datasets of breast cancer patients in this region, that can 

be analyzed with intelligent algorithms to support detection in 

early stages, as a strategy to reduce the mortality rate of this 

cancer in the region. 

V. CONCLUSIONS, LIMITATIONS AND 

OPPORTUNITIES 

In this work, 226 articles were selected, coming from six 

information sources: ACM, IEEE, Nature, PubMed, Scopus and 

Springer, consulted on July 20, 2021. The increasing trend in 

the number of publications on the subject over the analyzed 

period, 2016-2021, evidences the great interest in applying 

intelligent algorithms in the different stages of the combat 

against breast cancer. 

Some of the findings in this work correspond with those 

previously reported, such as the most used intelligent 

algorithms in the different stages of the breast cancer fight, 
SVM, RF and DT, as well as their dependence on the data types 

available for their application. In the same way, the same most 

commonly used metrics to measure the performance of the 

algorithms were identified: Accuracy and AUC, as well as the 

sources and data types: US patient imaging. Reaffirming also 

the stages, Diagnosis & Treatment, for which the greatest 

number of research works were detected in the covered period. 

On the other hand, some results of this study show us the new 

trends on the information sources used, with a downward trend 

of public sources, as well as the affiliation country of the first 

author of the publications, with authors from India and China 
gaining great relevance. Finally, the results presented show the 

need to emphasize aspects such as the consistent lack of recent 

work on the stages of the disease known as Prevention and 

Early Detection. Also evident is the lack of emphasis on 

analyzing the results using appropriate metrics that highlight 

critical medical aspects, such as the False Negative and False 

Positive indicators. Finally, it is worth noticing the lack of 

works and data from other regions of the world, such as Latin 

America and the Caribbean, which have high mortality rates 

and socioeconomic situations that condition the viability of the 

proposals to be implemented for these cases. 

Limitations. During the selection of the articles to be 
considered in this study, some were discarded due to lack of 

access to the full text, as reported. On the other hand, the 

identification of the cancer control stage involved certain 

difficulties, in particular differentiating between Early 
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Detection and Diagnosis & Treatment, since it depends mainly 

on the time at which the patient attends the consultation and, if 

applicable, on the size and progression of the tumor, which was 

described in the corresponding section. 

Opportunities. The use of risk factor data for the Prevention 
and Early Detection of breast cancer can become a low-cost 

alternative with immense potential impact. An active 

involvement of researchers and institutions in regions such as 

Latin America and the Caribbean is required in order to improve 

the culture of digital data collection during medical processes. 

In the case of the Early Diagnosis stage, the search for viable 

alternatives presents the opportunity to directly impact the 

breast cancer mortality rate in women, particularly for less 

developed countries. In addition, a proactive role of researchers 

in that region can help to focus the efforts of the scientific 

community on proposals with intelligent algorithms that have 

shown their effectiveness along all the stages of breast cancer 
control. 

Recommendations. It is widely recommended that 

healthcare institutions, as well as researchers, anonymize their 

breast cancer patient datasets and establish simpler protocols 

for sharing those data with the scientific community. The 

Prevention stage for cancer control needs to be addressed, so 

innovative approaches are needed to use intelligent algorithms 

in that task. The scientific community and health authorities 

need to create a synergy around proposals with intelligent 

algorithms that can help in the different stages for breast cancer 

control. Such proposals would have the advantage of 
representing a low cost and time to implement, directly 

impacting patient survival, in addition to lightening the 

economic burden on the population and health systems of the 

countries in the region. 
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