
IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 10, OCTOBER 2022 2237

High Speed Marker Tracking for Flight Tests
Gabriel A. Melo , Marcos R. O. A. Máximo and Paulo A. L. Castro

Abstract—Flight testing is a mandatory process to ensure safety
during normal operations and to evaluate an aircraft during its
certification phase. As a test flight may be a high-risk activity that
may result in loss of the aircraft or even loss of life, simulation
models and real-time monitoring systems are crucial to access
the risk and to increase situational awareness and safety. We
propose a new detecting and tracking model based on CNN, that
uses fiducial markers, called HSMT4FT. It is one of the main
components of the Optical Trajectory System (SisTrO) which
is responsible for detecting and tracking fiducial markers in
external stores, in pylons, and in the wings of an aircraft during
Flight Tests. HSMT4FT is a real-time processing model that is
used to measure the trajectory in a store separation test and
even to assess vibrations and wing deflections. Despite the fact
that there are several libraries providing rule-based approaches
for detecting predefined markers, this work contributes by devel-
oping and evaluating three convolutional neural network (CNN)
models for detecting and localizing fiducial markers. We also
compared classical methods for corner detection implemented
in the OpenCV library and the neural network model executed
in the OpenVINO environment. Both the execution time and the
precision/accuracy of those methodologies were evaluated. One of
the CNN models achieved the highest throughput, smaller RMSE,
and highest F1 score among tested and benchmark models.
The best model is fast enough to enable real-time applications
in embedded systems and will be used for real detecting and
tracking in real Flight Tests in the future.

Index Terms—tracking, convolutional neural networks, corner
detection, deep learning, flight test, fiducial marker, Secchi disk.

I. INTRODUCTION

This paper provides a fast and precise neural network
model to detect fiducial markers in real-time embedded

systems, namely, the Secchi Disk fiducial marker. Those are
used in many applications which is necessary to track an object
in real-time, such as flight testing, automobile testing, mixed
reality, optical experiments, and motion capturing for robotics
or animation. In special, the flight test application requires cer-
tified hardware for airborne operation and optimized software
to run in real-time as depicted in Fig. 1 which demonstrates
a store separation flight test. These fiducial markers, as they
have a predefined shape with fixed and distinct characteristics
from their environment, such as high contrast edges, they
are easier to detect than the arbitrary object that they are
attached to. Those applications often need high precision
and low misclassification, thus an approach using the whole
object would encompass a high computational cost. Therefore,
tracking a fixed amount of fiducial markers distributed along

Gabriel A. Melo is with Instituto de Pesquisas e Ensaios em Voo (Flight Test
and Research Institute), São José dos Campos – SP – Brazil gam@ita.br

Marcos R. O. A. Máximo and Paulo A. L. Castro with the Autonomous
Computational Systems Lab (LAB-SCA), Computer Science Division, Aero-
nautics Institute of Techonology, São José dos Campos – SP – Brazil
mmaximo@ita.br, pauloac@ita.br

Fig. 1. A store separation flight test with an Embraer 314 (Super Tucano)
conducting the test with a camera pod attached (middle) and its image captured
before the separation (lower).

with the whole object also keeps the computational burden
manageable while also increasing the tracking size for a rigid
body, resulting in better accuracy.

In-flight processing also allows for multiple separations to
be safely performed in the same flight, reducing the overall
flight time in an airworthiness certification campaign, therefore
fuel consumption and costs [1]. Being able to process the data
in real-time also increases the overall safety of the mission,
as opposed to processing the data on the ground, after the
flight, as the telemetry link is limited and not capable of
transmitting high-speed and high-resolution images. These are
the necessities that came from the Brazilian Flight Test and
Research Institute IPEV (Instituto de Pesquisas e Ensaios
em Voo), an organization focused on guaranteeing the safety
and airworthiness of the Brazilian Air Force’s aircraft by
performing flight tests.

Other markers such as ArUco (Augmented Reality from
University of Cordoba) and ChArUco (Chessboard ArUco) [2]
are more commonly used in mixed reality applications, as they
provide a more flexible setup and the capacity to uniquely
identify each marker. For more dynamic applications, even
natural landmarks may be used as a target for tracking, requir-
ing either a multi-camera setup or knowledge of the world to
estimate the target’s size [3], though the computational power
required to process it in real-time at a high rate would not be
possible to be embedded.

As related works, several classical algorithms are used
for identifying many markers composed of crosses, circles,
edges, lines, edges, and corners, such as the: Harris Corner
detector, Shi-Tomasi Corner detector, SIFT (Scale Invariant
Feature Transform), SURF (Speeded-up Robust Features),

https://orcid.org/0000-0001-5878-7967 
https://orcid.org/0000-0003-2944-4476
https://orcid.org/0000-0001-5515-1672


2238 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 10, OCTOBER 2022

ReacTIVision

ChAruCo

Secchi
Disk

IntersenseCCTag

ArTag ARToolKit

Fig. 2. Various fiducials markers from the literature were created for different
applications and augmented reality libraries. Adapted from [8] and [9].

FAST (Features from Accelerated Augmented Test), BRIEF
(Binary Robust Independent Elementary Features), and ORB
(Oriented FAST Rotated BRIEF) [4].

In comparison to those handcrafted approaches for marker
identification, a machine learning solution offers more flexi-
bility to detect different shapes and colors of markers as its
adaptation would only require changes to the training set and
not to the code itself that would happen, for instance, if instead
of an edge in the center of the marker another circle were to be
used. Among the learning-based techniques, a convolutional
neural network is shown to have the best inference time,
and, depending on its training set, a generalization capacity
at least equal to those classical feature-based approaches [5].
Recent works, such as Deep Charuco [2], also employs CNNs
to Charuco markers detection. Other markers used mostly in
mixed reality applications are shown in Fig. 2. To the best of
our knowledge, this is the first work to use CNNs to detect
Secchi disk fiducial markers in a flight test application.

After determining the bidimensional coordinates of known
points in space and after estimating the intrinsic camera param-
eters, one may compute the tridimensional position and orien-
tation of given points with respect to the camera. This problem
is known as Perspective-of-N-Points (PnP) [6] and it serves
as a source for feedback information regarding the markers’
localization. For a multi-camera setup, another approach is to
triangulate the point’s position given the coordinates of one
camera with respect to the other [7].

In this work, Section II covers a summarized overview of
the deep learning theory, Section III describes the method-
ology used for data generation, model implementation, and
training, Section IV presents the results and discussions and
the conclusions are presented in Section V.

II. DEEP LEARNING THEORY

Artificial neural networks are arbitrary computational graphs
whose inspiration came from its biological counterpart [10].
Deep learning bootstraps this idea by envisioning several
techniques for enabling the training of more stacked layers of
neurons, creating computational graphs with greater maximum
node distances [11].

Convolutional neural networks (CNNs) are essentially a set
of kernels of cross-correlations that are applied in parallel (in
the case the kernels pertain to the same layers) or sequentially.
Those kernels have differentiable activation functions and
their parameters are learned through back-propagation [12].

Therefore, the synaptic weights are expressed by the elements
from those convolution kernels. Compared to a fully connected
layer, the convolutional one is a sparser representation as only
nearby (on pixel location) neurons are connected. It requires
fewer parameters for the computation as the same kernel is
used throughout the image (weight-sharing) and also preserves
the dimensional structure of an image as its input and outputs
are channels of matrices [13].

The convolution operation is actually a direct cross-
correlation from the kernel to the input image. To interpret
this operation by the mathematical definition of convolution,
one needs to interpret the kernel’s representation as being a
kernel mirrored in both x and y axis. It is mathematically
defined as follows, where C is the number of channels, KH
is the kernel’s height, KW is the kernel’s width, ac is the
activation value at the channel c, and kc is the c− th kernel,
resulting in the activation of the zij neuron:

zij =

C∑
k0=0

KH∑
k1=0

KW∑
k2=0

kc(k1, k2)ac(i+ k1, j + k2). (1)

For more details regarding Deep Learning and CNNs, please
refer to [14].

III. METHODOLOGY

As a fiducial marker, the Secchi Disk was used for historical
reasons, as most recorded videos from automobile and flight
testing used either a black and yellow or white and black edge
encompassed inside a circle, as observed in the store under the
wing in Fig. 1.

The tracking process was done in a frame-by-frame appli-
cation of the detection method, using the nearest neighbor
algorithm to match associate each marker from its previous
location to a later frame. As such the previous location defines
a region of interest (ROI) in which the marker should be
located in the next frame. The reprojected points from the
6D estimates given by the PnP algorithm were also utilized as
a reference for defining the ROIs. In case of divergence, the
whole image would be scanned for detected markers.

A. Synthetic Data

The training dataset for the learning algorithms was mod-
eled as a 2D SVG (Scalable Vector Graphics) figure whose
proprieties were randomized: colors, position, rotation, X and
Y scale, and rotation after scale. Those values were sam-
pled from a uniform distribution with 32-bits floating points
numbers, the position had 4-pixel padding from the image’s
borders, the radius varied between 8 to 24 pixels, and the
colors, for each channel, had the darkest value sampled from
0 to 80 and the other colors were the sum of this value with
another sampled from 20 to 60 and 60 to 150 corresponding
to the background and brightest color respectively. A Python
function wrote a set of randomized SVG codes which were
rendered to PNG using the CairoSVG library.

Initially, the SVG figure was composed of a rectangle that
comprised the background and a group that was formed from
four quarters of a circle. A prior approach with a full circle and



MELO et al.: HIGH SPEED MARKER TRACKING FOR FLIGHT TESTS 2239

(a) (b) (c)

Fig. 3. Artifact in the border of the marker (a), image rendered without the
artifacts (b), and image rendered with light and curvature emulation (c).

two quarters resulted in aliasing artifacts in the border in which
the full circle color could form a one-pixel circumference
involving the mark as shown in Fig. 3.

Further iterations from this dataset generator added a vari-
able background in an elliptical shape that would try to emu-
late a marker placed on a curved surface. Color gradients were
also added, not only in the background, emulating lights from
different directions but also a circular bloom effect centered
on the marker, a simple attempt to recreate the glossiness of
the sticker.

During training, several image augmentation techniques
were also employed such as adding random Gaussian noise,
random Gaussian blur, salt, and pepper noise, and even a Bayer
color filter array was employed in a separate model that would
be fed raw images from a color camera. Those noises and
augmentations were applied over a model that was first trained
on the easier (initial) images in order to facilitate the learning
task.

The data generator allows for an arbitrary number of
markers to be generated as there are several degrees of
freedom in real-valued parameters. For the simpler models, the
generated images had a resolution of 24 pixels wide square, but
resolutions of 64 pixels were also used in the mixed model.
Over 320,000 images were rendered of which 16,000 (5%)
were used for validation (hyper-parameter selection and early
stopping) and 16,000 (5%) for testing (final model evaluation).
The main limitation for not generating more images was so
that the entire dataset could fit in the shared GPU memory. For
the detection, the datasets were doubled in size with negative
samples.

Even though the rendered images are colored (3-channel
RGB), they are either converted to gray-scale directly or
to a Bayer pattern image, both a 1-channel representation
that would be the raw output of respectively a mono or
color camera. This makes the task somewhat more difficult,
as information from other channels is lost. Even though it
would be possible to use linear interpolation for demosaicking
prior to feeding the neural network, several neural models for
demosaicking and super-resolution have been developed [15].
For the first trained models and for comparisons purposes
with OpenCV’s algorithms, the grayscale direct conversion
was used, according to the following Equation, where R, G,
and B represent the red, green, and blue channel values for
each pixel:

grayscale = 0.299R+ 0.587G+ 0.114B. (2)

B. Model Implementation

The task in which the implemented models aimed to solve
was to estimate the fiducial marker’s position with subpixel
accuracy (its x and y coordinates) while also providing a
measure of confidence, the probability that the image was
that of a trackable marker. While restricting the problem to
tracking a single marker would seem to oversimplify the main
problem which requires multiple markers on an object of
interest, there are some techniques that allow expanding those
single estimation models to multiple trackers [16].

The first model implemented was a fully-convolutional
network with five convolutional layers, using a ReLU acti-
vation function. The input image was a single-channel square
grayscale image 24 pixels wide. All the layers had a square
kernel of 5 pixels in size, except the last layer which had
a size of 6 pixels. The number of channels in each layer
exponentially increased until the middle layer (by a factor of
two), and then decreased in the same manner in order to match
the output dimension of 2, as shown on the model’s diagram
in Fig. 4.

Convolution
Convolution

Convolution Conv
Conv

Conv

1@24x24 4@21x21
8@17x17

16@13x13

8@9x9
4@5x5

1x2

Fig. 4. Architecture representation for the first iteration of the fully convo-
lutional model, with x and y estimates as outputs.

Another model which tried to explore the equivariance
property from the convolutional layers was also developed.
Its first five layers were also fully convolutional with a kernel
of size 5 but it utilized a zero-padding on the image to preserve
its width and height on those layers while increasing the
number of channels. The centroid from the activation of each
channel in the last convolutional layer was calculated and
served as input to a fully connected sequence of layers whose
final output was the marker’s position and confidence. One
implementation of this model using Bayer pattern [15] raw
images of makers featured a downsampling operation followed
by an upsampling operation, which is performed by the first
convolutional layer that had a stride of 2 and by a bilinear
interpolation respectively. This was thought to separate and
aggregate the colors in 4 channels with half the resolution
which would be combined to debayer the raw image, as
represented in Fig. 5. This encourages the network to learn
a fast demosaicking method specialized for the localization
problem that should at least outperform a single channel-wise
linear interpolation demosaicking.

Besides the Xavier Initialization [17] which is random
sampling with a variance proportional to the fan-in of the layer,
the weights of the first layer for this mixed model were also
summed to canonical kernels that would facilitate the training.
Kernels with Bayer filters, Sobel filters, and the identity kernel
were employed in this transfer learning-like technique, each



2240 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 10, OCTOBER 2022

applied on its own channel in the first, second, and third
convolutional layers respectively.

Convolution

Upsample
Convolution

Convolution Centroid

1@64x64 4@32x32
4@64x64 8@64x64

16@64x64

1x48 1x16
1x3

Dense

Fig. 5. A mixed convolutional model that employs convolutional layers
maintaining the image dimension while increasing the number of channels
while calculating the sum, x and y softmax positions for the activations of
each channel and passing to fully connected layers.

Besides an initial usage of MSE (mean squared error) for all
normalized outputs (x and y between 0 and 1 and confidence),
the loss function was defined as a mixture of BCE (binary
cross-entropy) and MSE, as shown in Equation (3), masking
the latter when the target probability was zero. This way when
the input image did not represent a marker, any positional
output given by the model would not influence the loss,
thus becoming don’t-care values. The P variable indicates
the true probability of the image being a marker (and was
restricted to either 0 or 1), P̂ was the model’s probability. The
same applies to the x and y parameters which represents the
normalized positions. The K hyper-parameter determines the
relative importance between the task of estimating the position
in relation to the probability of the image being a marker. For
all trained models, this constant K was chosen as the area of
the image in pixels, as it denormalizes the position and thus
an error of 1 pixel would have the same order of magnitude
as the BCE of a random guesser.

L =
1

N

N∑
i=1

(
(x̂− x)2PK +BCE(P̂ , P )

)
, (3)

where the BCE (Binary cross-entropy) is defined as follows:

BCE(P̂ , P ) = −Plog(P̂ )− (1− P )log(1− P̂ ). (4)

For training, a normalization was used both for the inputs
and for the outputs, constraining it to values between 0 and 1.
Therefore, both x and y were linearly transformed from pixels
units to relative image size units, with (0, 0) representing the
topmost left position and (1, 1) representing the rightmost
bottom position. As for the image input, the unsigned integer
8-bit values representing each pixel intensity were converted
to floating-point numbers linearly with 255 mapped to 1.0.

For the models that estimated the probability that the image
contains a marker, negative samples extracted from back-
ground images from different scenarios were used. Random
crops were randomly extracted from those images so that there
would be the same number of positive and negative samples. In
addition to those, constant images were also used as negative
samples.

The models were trained for up to 300 epochs but generally
would finish training before 100 epochs due to the early
stopping heuristic, as observed in Fig. 8, with a patience
threshold of 10 epochs. This measure, in addition to the noise,
data augmentation, and variations present on the training data

as well as the limited number of parameters in the networks,
mitigated over-fitting from occurring, at least given that the
training, validation, and testing sets were sampled from the
same distribution. The training code was written in Python
3.9 using the PyTorch 1.8.1 library [18] and executed on one
node in the Santos Dumont (SDumont) supercomputer cluster.

C. Multi-Task Learning

For the last model, which relied on calculating the centroid
of the neuron’s activations, a multi-task learning setup was
devised which consisted of learning a marker position heat-
map. A Gaussian distribution with a standard deviation of 2
pixels and a mean equal to the marker’s center position was
employed as the main feature of this heatmap. Thus, the model
had an extra output that reconstructed the heatmap, as shown
in Fig. 6.

Convolution
Upsample Convolution

Convolution Centroid

1@64x64 4@32x32
4@64x64 8@64x64

16@64x64

1x48 1x16
1x3

1@64x64

Dense

Conv

Fig. 6. Multi-task learning adaptation for the mixed model as the last
convolutional layer is used as input to reconstruct a heat map whose highest-
value point is the marker center.

D. Progressive Training

One technique that made training converge in fewer epochs
than just feeding the most elaborate rendering with blur,
bloom, and noise was to first feed the simpler images and
then proceed to gradually add those effects. The crisp corner
on the center of the marker was the most prominent feature
that the models identified, as a result, obstructing, blurring it,
or applying a bloom effect over it would severely reduce the
accuracy of a newly trained model from scratch.

Another trick, easily applied in the case of the same padding
(zero-padded images) was to gradually increase the number of
convolutional layers, creating each layer at a time after some
training of the already existing ones. For initializing a newly
inserted layer inside an already-trained network, its weights
were adjusted so that the expected mean values from the
activations of an earlier layer would remain the same and its
variance would not change more than an order of magnitude,
typically increasing by two-fold. For a square kernel of size
5, it would mean to randomly initialize its weights with mean
zero and variance 1/5 sampled from a normal distribution,
except for its center weight which would be set to 1.

E. Multi-Tracking Generalization

An initial approach for detecting and tracking multiple
markers from a larger image would be simply to cut sev-
eral smaller windows forming a grid (preferably with some
overlapping so that a marker placed exactly on the limits of



MELO et al.: HIGH SPEED MARKER TRACKING FOR FLIGHT TESTS 2241

a window would fall in the range of another) and run the
inference on each of those smaller images separately.

A better approach for efficiently leveraging the computation
performed by the convolutional layers is to input the whole
image to the convolutional layers, resulting in a higher-
dimensional output by those layers that are addressed by a
larger stride in the last layer. For the fully convolutional model,
this is implemented by defining a stride and by applying a
non-maximal suppression to the last layer, as depicted in Fig.
7. Note that the stride is applied in the last convolutional
layer and implicitly defines a square bounding box for each
activation, whose size is the same as the original single input
model (24x24).

An interesting result of this rationale for the model with
flattened fully connected layers is to convert those layers
to convolutional layers with kernels of size 1, which is
mathematically equivalent. The number of neurons in a layer
becomes the number of channels and its weights remain the
same. In this way, the latter method may be applied as the
network became a fully convolutional one.

Convolution Conv (stride=5)

1@124x124 4@122x122 8@118x118
16@114x114

8@110x110
4@106x106

3@20x20

Convolution
Convolution Convolution

Convolution

Fig. 7. Resulting architecture for applying the same convolutional model to
bigger images for multi-tracking.

IV. RESULTS AND DISCUSSIONS

The models were evaluated on an Intel Core i7-5500U CPU
@ 2.40GHz notebook which also had an integrated graphics
processing unit (Intel Gen8 HD Graphics) which was used
in the cases that would result in a better performance. The
computer had 8GB of dual-channel DDR3 @ 1600 MHz,
and run in an environment with Python 3.8.6, Linux 5.10,
OpenVINO™ build 2021.3.0 API 2.1. Such a system is similar
to the airborne certified computer inside the camera pod and
it is also representative of single-board computers (SBCs)
that are typically available in edge devices for embedded
applications.

For the OpenVINO™ compilation, the models were ported
to an ONNX (Open Neural Network Exchange) format and
then ran in the inference engine. More optimizations for infer-
ence could be performed as the model kept all of its parameters
and computed in the same floating-point precision of 32 bits.
The code developed in this work is openly available in the
following Github repository: https://github.com/gabrui/papers.
While the original store separation videos are not provided in
the repository, synthetic data and other captured images are
available.

As the upsampling operation is not supported in the ONNX
format and its OpenVINO™ implementation, the mixed model
was retrained without the downsampling and upsampling
operations and also had its centroid operation changed to a
fixed convolutional kernel.

0 25 50 75 100 125 150 175
Epochs

10−2

10−1

100

L
os

s

Train

Validation

Fig. 8. Training and validation error measure in the loss function defined by
Equation 3 for the normalized values in the fully convolutional model.

TABLE I
RESULTS FOR INFERENCE USING THE TRAINED MODELS

Model RMSE F1 Acc. FPS

Shi-Tomasi 0.75 0.87 0.88 39,525
Harris 1.06 0.79 0.82 38,022
SIFT 2.72 0.78 0.81 1,167

OpenCV’s cornerSubPix 0.37 0.86 0.84 24,630
HSMT4FT 0.086 0.99 0.99 47,944

Mixed Centroid 0.11 0.99 0.99 19,679
HSMT4FT Wider 0.067 0.99 0.99 5,252

A. Comparisons

The OpenCV library [19] was used since it has an op-
timized implementation for Intel processors. The function
cornerSubPix was employed as it would have better ac-
curacy for detecting the quadrangular edge with an error less
than one pixel, developed by Forstner [20], which was verified
with a root mean square error (RMSE) of 0.37 for the simple
synthetic markers, as shown in Table I, which also includes
the F1 score of the detection rate (defined as the harmonic
mean between recall and precision). Other algorithms such as
Harris and Shi-Tomasi had a higher throughput but they did
not reach a sub-pixel accuracy. The HSMT4FT model achieved
the highest throughput (47,944) and an error (0.086) which are
95% higher and 76% lower, respectively than those achieved
by cornerSubPix. There is a trade-off between the model
size and its accuracy, as observed in the results from the mixed
and the wider models which achieved higher accuracy at the
cost of lower throughput. All the neural models achieved over
99% classification accuracy in differentiating marker images
from background images in the test set, considering a 0.5
threshold in the probability.

A qualitative comparison for the tracking can be observed
in Fig. 9 in which the proposed method (upper) is compared
to the classical one (bottom). While several markers were
lost or not even tracked in the older method, the newer
was able to track and estimate the position of every maker
visible during the store separation. Those storage separation
flight tests were executed previously by IPEV with an older
algorithm implemented in MATLAB® that could take up to 4
minutes to process the video stream. The data recorded from
those previous flights test were used to evaluate the newly
proposed method, which is expected to be executed in flight
during the next mission.

https://github.com/gabrui/papers


2242 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 10, OCTOBER 2022

Fig. 9. Comparison between the tracking between the proposed novel
model (top) and the classical edge detection approach (bottom), which was
unable to track three makers on this launch. The color differs between the
methods because of the debayering step used on the HSMT4FT model. Video
comparison available in https://youtu.be/etf37r0CQA0?t=195.

B. Ablations

Notice that for the Initial Fully Convolutional model, an
even simplified version that had no measure of confidence was
initially trained, as a direct comparison to OpenCV’s coner-
SubPix function that only provided the x and y coordinates as
outputs, as shown in Fig. 10.

The Leaky ReLU activation function had a similar per-
formance to its ReLU counterpart. Nevertheless, there were
instances when training the ReLU models in which most of the
neurons had their activations permanently set to zero because
of negative weights, so the network had to be reinitialized
from scratch. This was typically detected in the first 10 epochs
as both the training and the validation losses would stay
approximately constant at a high value (that indicated that sub-
pixel accuracy had not been reached).

Another test was to train a shallower model. With the
fully convolutional model, this would be achieved with larger
kernels and/or with a kernel stride larger than one. Those
shallower models would have a higher throughput but at the
cost of lower precision.

An interesting note was that the engineered approach to
calculate the centroid and sum of the activation did not outper-
form the fully convolutional models when controlling for both
the number of learnable parameters, precision, and throughput.
The computation for the centroid is mathematically equivalent
to the convolution with a kernel that is a ramp function on the
desired axis, normalized by the activation.

The downsampling and upsampling operation for the mixed
model increased the error for the grayscale images when
compared to its counterpart, as those operations suit better
to Bayer pattern images. Removing channels in the middle
layers of the model also resulted in a loss in performance,
albeit not as large as if the same number of parameters were

to be removed from the initial or last layers which already had
fewer channels than those middle ones. An exception to this
observation was the model whose

The NAdam gradient update heuristic was actually very
similar to its Adam counterpart, though in some iterations,
mainly with ReLU activation functions, the error diverged
when employing the NAdam implementation in PyTorch.
The other time constants related hyper-parameters β1 and β2

should also be tweaked to reduce this erratic behavior caused
by larger gradients. Nevertheless, the hyper-parameters which
had the biggest influence on the convergence were the starting
learning rate and its decay rate.

The Gaussian’s blur on the image significantly increases
the position error, although not as large as the variance of the
Gaussian kernel, which suggests that even though the networks
have learned to detect the sharp quadrangular edge location, it
also utilize the information from the lines that should converge
at the edge center.

0.0 0.2 0.4 0.6 0.8 1.0
Pixel Error (RMSE)

0

200

400

600

800

1000

1200

C
ou

n
t

Convolutional

Sub. Pix.

Fig. 10. The positional error distribution for the test dataset compared
between the fully convolutional model and OpenCV’s cornerSubPix
corner detection.

V. CONCLUSION

Several convolutional neural network models were devel-
oped and trained to track fiducial markers from a high-speed
video in an airborne embedded system. Those models were
compared with several other corner detection algorithms, such
as the Harris Corner detector, the Shi-Tomasi Corner detector,
and other features detection, such as SIFT, and were found to
have a better detection rate and a lower localization error.

While not every convolutional model implemented could
surpass its OpenCV counterpart in terms of inference through-
put (FPS), as it requires more arithmetic operations per second
(such as FLOPS), their accuracy metrics were better by at
least a factor of 3. Nevertheless, wider models were able
to have greater precision than their counterparts with the
same number of layers. It seems to indicate that there is a
trade-off between precision and inference throughput for the
same computational device. The Fully Conv. Initial model
achieved the highest throughput, smaller RMSE and highest
F1 score among tested and benchmark models as presented in
section IV-A.This model is suitable for real-time applications
in embedded systems and will be used for real detecting and
tracking in real flight tests in the future.

In future works, the developed models could also be ap-
plied for ArOuco and ChArOuco markers detection, requiring

https://youtu.be/etf37r0CQA0?t=195


MELO et al.: HIGH SPEED MARKER TRACKING FOR FLIGHT TESTS 2243

only adjustments to its training set in order to incorporate
square edges on the task of sub-pixel position refinement.
The same expansion techniques would be applied for whole
image detection. Another important future work is to evaluate
and improve the model’s generalization capabilities in other
datasets that encompass other markers in different conditions,
and also comparing it to other deep neural network models.
Pruning the networks or reducing the computation precision of
some initial convolutional layers to a floating-point of 16 bits
or even an unsigned integer of 8 bits could further improve
its throughput and will also be studied in future works.

ACKNOWLEDGMENT

The authors acknowledge the National Laboratory for Sci-
entific Computing (LNCC/MCTI, Brazil) for providing HPC
resources of the SDumont supercomputer, which have con-
tributed to the research results reported within this paper. URL:
http://sdumont.lncc.br.

This work was funded in part by FINEP (Financiadora
de Estudos e Projetos – Funding Authority for Studies and
Projects) Projet FAEV (Ferramentas Avançadas de Ensaios
em Voo – Advanced Tools for Flight Testing), under Grant
Agreement Ref.: 01.22.0115.00.

REFERENCES

[1] L. E. G. de Vasconcelos, N. P. O. Leite, A. Y. Kusumoto, L. Roberto,
and C. M. A. Lopes, “Store separation: Photogrammetric solution for
the static ejection test,” International Journal of Aerospace Engineering,
vol. 2019, p. 6708450, Jan 2019.

[2] D. Hu, D. DeTone, and T. Malisiewicz, “Deep charuco: Dark charuco
marker pose estimation,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 8428–8436, 2019.

[3] F. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer,
“Speeded up detection of squared fiducial markers,” Image and Vision
Computing, vol. 76, 06 2018.

[4] Itseez, The OpenCV Reference Manual, 2.4.9.0 ed., April 2014.
[5] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-

Jiménez, “Automatic generation and detection of highly reliable fiducial
markers under occlusion,” Pattern Recognition, vol. 47, p. 2280–2292,
06 2014.

[6] Y. Zheng, Y. Kuang, S. Sugimoto, K. Åström, and M. Okutomi,
“Revisiting the pnp problem: A fast, general and optimal solution,” in
2013 IEEE International Conference on Computer Vision, pp. 2344–
2351, 2013.

[7] S. D. Blostein and T. S. Huang, “Error analysis in stereo determination
of 3-d point positions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PAMI-9, no. 6, pp. 752–765, 1987.

[8] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and R. Medina-
Carnicer, “Generation of fiducial marker dictionaries using mixed integer
linear programming,” Pattern Recognition, vol. 51, 10 2015.

[9] O. Araar, I. E. Mokhtari, and M. Bengherabi, “Pdcat: a framework for
fast, robust, and occlusion resilient fiducial marker tracking,” Journal of
Real-Time Image Processing, vol. 18, pp. 691–702, Jun 2021.

[10] G. N. Maria Cristina, V. G. Cruz Sanchez, O. O. Vergara Villegas,
M. Nandayapa, H. d. J. Ochoa Dominguez, and J. H. Sossa Azuela,
“Study of the effect of combining activation functions in a convolutional
neural network,” IEEE Latin America Transactions, vol. 19, no. 5,
pp. 844–852, 2021.

[11] G. Adriano de Melo, D. N. Sugimoto, P. M. Tasinaffo, A. H. Mor-
eira Santos, A. M. Cunha, and L. A. Vieira Dias, “A new approach to
river flow forecasting: Lstm and gru multivariate models,” IEEE Latin
America Transactions, vol. 17, no. 12, pp. 1978–1986, 2019.

[12] E. Paiva, A. Paim, and N. Ebecken, “Convolutional neural networks
and long short-term memory networks for textual classification of
information access requests,” IEEE Latin America Transactions, vol. 19,
no. 5, pp. 826–833, 2021.

[13] R. Gonzales-Martínez, J. Machacuay, P. Rotta, and C. Chinguel, “Hy-
perparameters tuning of faster r-cnn deep learning transfer for persistent
object detection in radar images,” IEEE Latin America Transactions,
vol. 20, no. 4, pp. 677–685, 2022.

[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[15] S. Guo, Z. Liang, and L. Zhang, “Joint denoising and demosaicking with
green channel prior for real-world burst images,” IEEE Transactions on
Image Processing, vol. 30, pp. 6930–6942, 2021.

[16] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikäinen, “Deep learning for generic object detection: A survey,”
International Journal of Computer Vision, vol. 128, pp. 261–318, Feb
2020.

[17] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” Journal of Machine Learning Research -
Proceedings Track, vol. 9, pp. 249–256, 01 2010.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran
Associates, Inc., 2019.

[19] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[20] W. FORSTNER, “A fast operator for detection and precise location of
distincs points, corners and center of circular features.,” in Intercommis-
sion Conference on Fast Processing of Photogrammetric Data, pp. 281–
305, 1987.

Gabriel Adriano de Melo Gabriel Adriano de
Melo is a Ph.D. student at Instituto Tecnológico de
Aeronáutica (ITA) in Electronic and Computer Engi-
neering, where he also received his MSc in 2020 in
the same area and BSc in Computer Engineering in
2019. Currently, Melo is a researcher at the Instituto
de Pesquisas e Ensaios em Vôo (IPEV) and works
with artificial intelligence and information systems
applied to flight testing. He worked with NLP during
his MSc and currently develops computer vision
systems.

Marcos Máximo Marcos R. O. A. Máximo received
the BSc degree in Computer Engineering (with
Summa cum Laude honours) and the MSc and PhD
degrees in Electronic and Computer Engineering
from ITA, Brazil, in 2012, 2015 and 2017, respec-
tively. Maximo is currently a Professor at ITA, where
he is a member of the Autonomous Computational
Systems Lab (LAB-SCA) and leads the robotics
competition team ITAndroids. He is especially in-
terested in humanoid robotics. His research interests
also include mobile robotics, dynamical systems

control, and artificial intelligence.

Paulo André Paulo André Lima de Castro is an As-
sociate Professor at ITA, where he obtained his B.Sc.
in Computer Engineering in 1997. He has received
his Ph.D. (2009) degree from Escola Politécnica da
Universidade de São Paulo (Poli/USP). He was a
post-doctoral visitor at the City University of New
York from 2012 to 2013. His main areas of expertise
are artificial intelligence, multiagent systems and
applications of AI to Finance.

http://sdumont.lncc.br
http://www.deeplearningbook.org

	Introduction
	Deep Learning Theory
	Methodology
	Synthetic Data
	Model Implementation
	Multi-Task Learning
	Progressive Training
	Multi-Tracking Generalization

	Results and Discussions
	Comparisons
	Ablations

	Conclusion
	References
	Biographies
	Gabriel Adriano de Melo
	Marcos Máximo
	Paulo André


