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Simulation of IoT-Oriented Fall Detection Systems
Architectures for In-Home Patients

Renato F. Bulcão-Neto, Paulo G. Teixeira, Bruno G. A. Lebtag, Valdemar V. G. Neto, Alessandra A. Macedo and
Bernard P. Zeigler

Abstract—Fall detection (FD) systems enable rapid detection
and intervention for people who experience falls, a leading
threat to the elderly’s health and autonomy. Most of these
systems conform to an IoT reference architecture which may
include multiple sensing mechanisms to balance the advantages
and drawbacks of each alternative. However, developing such
a heterogeneous system may be costly and quite resource and
time-demanding. This paper presents a Discrete Event System
Specification (DEVS) simulation model for FD systems that
compares the accuracy of nine different systems architectures
that combine traditional wearable and non-wearable sensing
devices in the acquisition layer. We perform simulations for
each architectural arrangement using four public datasets of
FD systems, totaling 36 simulations. Results reveal that an FD
accuracy of 96.67% is possible with an investment of almost
$6,000 US. Besides, spending 36 times less (around $150 US),
designers and clients could acquire an FD system composed of
wearable and non-wearable devices with an accuracy of 91%,
i.e., only 5% less than the most expensive alternative.

Index Terms—Fall detection, System architecture, Discrete
event simulation, Internet of Things, Experimentation.

I. INTRODUCTION

Due to the significant threat to the health and independence
of adults aged 65 years and older, there have been many

fall detection (FD) systems for preventing and detecting falls in
later life [1], [2]. FD systems often capture data from sensing
devices with accelerometers. Here, a person monitored must
carry a wearable device that analyzes the acceleration of two
or more axes and identifies sudden changes in acceleration
as falls. As an alternative to wearable devices, Doppler radar-
based FD systems [3], [4] rely on a non-wearable radar device
that emits sound waves and identifies the acceleration of a
person’s body; again, a likely fall takes place when an abrupt
variation in acceleration exists.

Regardless of which and how people’s data is captured
and interpreted as a fall, most FD systems implement an
Internet of Things (IoT) reference architecture [5]–[7], which
includes four layers: data acquisition, modeling, reasoning,
and dissemination. Consider the situation in which Ilka, a
70-year-old frail woman, lives alone in a small house. Built
upon multiple sensors, the FD system automatically monitors
(acquisition and modeling), analyzes Ilka’s activity patterns,
and identifies events that might indicate a fall (reasoning).
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If Ilka suddenly falls, an appropriate alert is immediately
sent to an application running on her daughters’ smartphones
(dissemination). Therefore, FD systems architectures based on
IoT principles cover the whole life cycle of Ilka’s activities
data, i.e., from acquisition to dissemination.

However, usability issues may occur in the case of FD
systems whose sensing mechanisms are primarily composed of
accelerometers [8]. For example, consider that Ilka enters the
bathroom carrying a device tight to her body (usually chest,
waist, or wrist). Although it is often a low-cost device, the
apparatus may cause discomfort, and there is no guarantee
that Ilka does not take it off. On the other hand, despite its
high cost, sensing based on Doppler radar is less obtrusive
from the user’s point of view and more effective in FD [4].

In this context, developing an IoT-oriented FD system with
multiple sensing mechanisms can take advantage of a sensor’s
benefits (e.g., low cost) and overcome its drawbacks (e.g.,
obtrusiveness). On the other hand, this heterogeneity poses
high demands when developing the data acquisition process
(e.g., costly deployment and sensors maintenance), and there
is no clue concerning the accuracy of FD results.

For those reasons, simulation models may help anticipate
the performance of different FD systems architectures still
in the system design phase [9] and reduce risks, time, and
experiment costs. Unfortunately, there is little research on
simulations of FD systems [10]–[14], despite the recent and
increasing interest in such simulations.

This paper presents a Discrete Event System Specification
(DEVS) simulation model [15], [16] for FD systems. Our
DEVS model compares the accuracy of nine IoT-based FD
systems architectures combining traditional wearable and non-
wearable sensing devices in the acquisition layer. Using four
public datasets for FD systems, we executed 36 different
simulations. Results reveal that, among six out of nine assessed
architectures, we can achieve more than 90% of FD accuracy
with costs ranging from 150 to 6,000 US dollars.

In brief, our main contribution is a simulation model based
on the DEVS formalism both for the specification and prop-
erties prediction (e.g., accuracy and cost) of IoT-oriented FD
systems architectures at design time.

The organization of this paper is as follows. Section 2
presents related work and our contributions. Section 3 in-
troduces background information. Section 4 details the IoT-
based FD system architectures used in the simulations. Section
5 describes the simulation protocol. Section 6 discusses the
findings, limitations, and threats to the validity of this study.
Finally, Section 7 includes the final remarks.
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II. RELATED WORK

Gutiérrez-Madroñal et al. [11] analyze the acceleration
behavior in two types of falls based on a belt prototype worn
on the patient’s hip. They model fall-related event patterns
and simulate these through an Event Processing Language
(EPL). The simulation of behaviors to generate fall-related
test events enhances the IoT-Test Event Generator (IoT-TEG)
system. Comparatively, our approach can make use of the IoT-
TEG’s dataset if fall events are explicitly annotated. Otherwise,
that dataset would be worthless because we do not reason over
the raw data. The authors also agree with us regarding a more
complex acquisition layer, i.e., with different types of sensors
for fall simulation purposes.

To model simulate how different human body parts behave
during a fall, Mastorakis and others [12] compare a fall
velocity profile with a myoskeletal simulation model. Authors
claim this approach is an efficient and customizable alternative
for FD compared with strategies including dissembled fall
datasets and low variability of people. Although our work on
discrete event simulation differs far from the physics simula-
tion approach, we agree that fall-related velocity/acceleration
profiles can also be extracted from a more diverse acquisition
layer, instead of solely from depth videos.

Noury & Hadidi [10] collected experimental data from a
smart home for the elderly and modeled the behavior of data
series using Hidden Markov Models. They exploited these
models to produce artificial data series, but very similar to real
data and in a flexible manner for addressing falls. Similarly,
they also consider simulation as an essential tool in response
to the costly and demanding conditions of field experiments,
although not being exclusively focused on FD, but so on
elderly daily activities in general.

A system developed by Makhlouf et al. [13] detects patients’
heart rates and fall events. It performs a cause and effect
analysis involving heart problems and falls, and also detects
the patient’s location. Differently of our simulation approach,
the authors build a Petri net-based simulation model to validate
their system with random and real data, with satisfactory
results. However, as the system relies on wearable sensors
data, the authors point out the need for improvements in the
FD service, including different human positions and activities.

The novelty of our approach relies precisely on adopting
DEVS simulation models for simulating a specific type of
IoT-based system (FD systems). The differences between this
type of IoT-based system and others rely on (i) how they are
combined to make up the whole system, (ii) where they are
deployed, (iii) and how the measured overall accuracy in the
simulation directly impacts the final result. Given this is a
critical domain (since failures could lead to injuries and even
deaths of the monitored people), our study is a contribution be-
cause it proposes the adoption of simulation models for trading
off the parameters mentioned above. Moreover, according to
[17], [18], the main activities supported by FD systems are fall
prediction, prevention, and detection. Our model contributes to
detection activities since we can anticipate the overall accuracy
delivered by different arrangements so that a professional or
client can select the one with the highest accuracy in FD.

III. BACKGROUND

This section introduces background information on the
discrete event simulation paradigm and a reference software
architecture for IoT systems development.

A. Discrete Event Simulation

A simulation model is a formal representation resulting
from the observation of a real subject of interest (e.g., a
system). Simulation models may be used for conducting ex-
perimental studies in Software Engineering, called simulation-
based studies (SBS) [19]. SBS may anticipate the effects of
a system’s implementation when essential factors (e.g., risks,
time, and costs) must be considered in the corresponding
real implementation. As they usually run in virtual settings,
SBS may also allow us to mitigate risks, time, and costs of
experiments [9].

During the design and implementation of an SBS, multiple
techniques may be adopted to model the behavior of a given
system, such as discrete event simulation techniques. A dis-
crete event simulation (DES) model describes the operation
of a system as a succession of events that cause the system
to change its state at discrete instants of time [15], [16].
For example, a new event is triggered whenever a simulation
element generates output.

One of the most popular formalisms for modeling complex
dynamic systems through discrete event abstractions is the
Discrete Event System Specification (DEVS) [15], [20]. At
this abstraction level, the next state of a system is defined
based both on the event and the previous state of the system.
Thus, DEVS-based models only consider states at which
events occur, skipping over all intermediate points in time.
One aspect that differentiates DEVS from other modeling
formalisms is its approach to generically representing the total
state of a system that varies in time as a function of the output
values and state transitions of a model.

DEVS-based simulation models may be composed of two
primary constructors: atomic and coupled models. The former
can represent minor parts of a complex system, such as a
sensor or even a small system, while the latter consists of
combining different, communicating DEVS atomic models
to create a more complex structure. For instance, if we
want to simulate a human body, the organism is a coupled
model composed of other related models (digestive system,
respiratory system, etc.) that finally comprise atomic models,
such as the stomach or lung. Then, coupled models support
composability, i.e., the possibility of iteratively composing
other atomic and coupled models to create complex structures.
Coupled models are expressed as System Entity Structure
(SES), enabling them to represent a family of different and
reusable simulation models. In a pruning process, the user
can select specializations in an SES which eventually results
in an executable hierarchical coupled DEVS model, as shown
later in Figure 1. SES files materialize the coupled models
and specify how the inner systems (atomic or other coupled
models) communicate among themselves [15].
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B. IoT Reference Architecture

The core concept of IoT systems development is context
information, which is any piece of information that charac-
terizes the situation of a relevant entity in a user-application
interaction [5]. It can be of several types (e.g., location and
identity) and describe the situation of multiple types of entities
(e.g., users). Moreover, it can be static, sensed, or derived from
other simpler ones. These and other characteristics heavily
influence the design aspects of IoT systems architectures.

The literature has synthesized various IoT systems im-
plementations into the following layered reference system
architecture [5]–[7]:

• Acquisition: this layer addresses how and where to get
context information that will be consumed by an IoT
application/system. Software components in this layer
should implement techniques dealing with multiple par-
ticularities of the acquisition process including the acqui-
sition’s responsibility (pull/push), the frequency of data
acquisition (instant/interval), the data source (sensor, mid-
dleware, or server), and the sensor type (physical/logical).
Depending on the combination of such techniques, the
implementation of that complex scenario may be costly
and effort- and time-demanding regarding sensor pro-
gramming, deployment, and maintenance, for instance.

• Modeling: it concerns the way the acquired context
information is represented through modeling techniques.
The choice of a specific modeling technique relies on
particularities of the previously acquired data such as
its diversity, freshness, imperfection, and the need for
relationships and dependencies representation. If a new
sensing mechanism is introduced into an IoT system
(e.g., video processing-based), this may require updates
in information modeling and even the replacement of the
modeling technique. Popular context information mod-
eling techniques (e.g., attribute-value pair and object
orientation) are surveyed elsewhere [5], [21].

• Reasoning: it employs methods of deducing new knowl-
edge based on the available modeled data. Similar to
the modeling layer, the requirements of reasoning also
emerge from characteristics of acquired data: imperfec-
tion and uncertainty. A preprocessing step in the reason-
ing process may be necessary to deal with inaccurate col-
lected data or missing values due to sensing inefficiencies.
This phase may also help improve reasoning performance
in terms of efficiency, soundness, and completeness.
Additional information about reasoning methods (e.g.,
first-order logic) is found in [5], [21].

• Dissemination: the delivery of context information to
consumers is the main goal of this layer. As the informa-
tion to be delivered can be deduced or not, the same fac-
tors discussed in context acquisition are applicable in the
development of context dissemination methods. Consider
the dissemination’s responsibility and frequency, which
can be implemented employing a consumer-initiated
query, or an event-based publish/subscribe mechanism.

This reference architecture serves as guidance for orches-
trating FD systems architectures, as we describe next.

TABLE I
ACCURACY AND PURCHASE PRICE OF THE SELECTED

DEVICES.

Device Description Accuracy Price
W1 Arduino UNO with ADXL335 92.7% $33.99
W2 Two Samsung Galaxy Mini

phones
95.29% $178

W3 LG G Watch R / Samsung
Galaxy S3

68% $238

NW1 Two Microsoft LifeCam Cin-
ema

95.1% $275.96

NW2 Microsoft Kinect 79.91% $114.95
NW3 SDR KIT 2500B 97% $5,495

IV. IOT-BASED ARCHITECTURES FOR FALL DETECTION
OF IN-HOME PATIENTS

A. The Architectural Arrangements

Recent studies reveal that the most common wearable IoT
devices used in FD systems [22]–[27] are accelerometers
(W1), smartphones (W2), and the combined usage of smart-
phones with smartwatches (W3). In parallel, the most common
IoT non-wearable devices in FD systems [26], [28], [29] are
conventional cameras (NW1), depth cameras (e.g., Kinect -
NW2) [30], and Doppler radar (NW3) [31].

In our home scenario, an elderly person is monitored by one
wearable device at a time (W1 to W3). Conversely, when the
person is in the bathroom, one of these non-wearable devices
(NW1 to NW3) can monitor her/his actions to instantaneously
detect an eventual fall. This is a realistic scenario, since
approximately 9% of elderly falls at home take place in the
bathroom [32] and most of those falls are not detected (e.g.,
often people take off the wearable devices to shower.)

The accuracy of every wearable and non-wearable device
present in the home scenario was collected from the literature
in FD systems. We searched for the acquisition price of each
device on the Amazon website on the same day so that this
information could not impact the results of our experiment.
The NW3 was the only device whose price had to be obtained
through its manufacturer [31]. Table I maps each wearable
and non-wearable device to its corresponding accuracy rate
and acquisition price. Four highlights are noteworthy:

• the W1 device is an accelerometer-based equipment wire-
lessly connected to an Arduino board, as in [27];

• two smartphones represent the W2 device because a
person should wear each one on right-side and left-side
pockets, as we found in [33];

• the W3 solution is a smartphone wirelessly connected to
a smartwatch a user wears, and FD may be based on the
sensors data of any of these wearable devices [23];

• and two depth cameras (NW1) because of the signal
obstruction for FD purposes found in [26].

There are advantages and drawbacks when exclusively
equipping a home environment with wearable or non-wearable
devices. Usability, cost, range precision, and signal obtrusive-
ness should be considered in this situation. For this reason,
we combine W1 to W3 with NW1 to NW3, resulting in
nine different architectural arrangements (ARCH) for FD
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systems presented in Table II. These arrangements exercise
compositions of devices present in the literature.

TABLE II
FD SYSTEM ARCHITECTURES, THE COMBINATION OF
WEARABLE AND NON-WEARABLE DEVICES, AND THE

ARCHITECTURAL COST.

ID W1 W2 W3 NW1 NW2 NW3 Cost
ARCH1 x x $5,528.99
ARCH2 x x $309.95
ARCH3 x x $148.94
ARCH4 x x $5,673.00
ARCH5 x x $453.96
ARCH6 x x $292.95
ARCH7 x x $5,733.00
ARCH8 x x $513.96
ARCH9 x x $352.95

In Table II, ARCH1 to ARCH3 combine one accelerometer
attached to the user with each one of the non-wearable devices
available for fall detection in the bathroom, i.e., cameras
(NW1), one Kinect (NW2), and one Doppler radar kit (NW3).
In turn, ARCH4 to ARCH6 suggest a user makes use of a
smartphone equipped with internal sensors useful for FD de-
tection, in combination with each non-wearable device located
in the bathroom. Finally, the acquisition layer of ARCH7 to
ARCH9 associates non-wearable devices with a smartphone
and a smartwatch.

From these nine architectural proposals, we assess each one
of the different combinations against given parameters, such
as acquisition cost and accuracy. The next section describes
how we model those architectural arrangements using DEVS.

B. Simulation Model for FD System Architectures

Methodological infrastructure setting. The FD system archi-
tectures mentioned above were modeled using a DEVS variant
called DEVS Natural Language (DEVSNL), which runs on
the MS4 Me modeling and simulation integrated development
environment (MS4 Me IDE).

A formal structure called the System Entity Structure (SES)
is governed by a small number of axioms that provide clarity
and rigour to the simulation model [15], [34], [35]. SES sup-
ports hierarchical and modular compositions, allowing large
complex structures to be built in a stepwise fashion from
smaller, simpler ones. SES can also represent specialization
and decomposition relationships and message flows among
systems entities.
Representation of an FD IoT-based system using MS4 Me.
Figure 1 illustrates a general IoT-based FD system architecture
as we model the capabilities of SES. Central to this research,
the acquisition layer comprises three main entities:

• Human Body: it reads input data from the simulation
model and sends them to a WD or NWD, depending on
the sensing device used in the simulation; and

• Non-Wearable device (NWD) and Wearable device (WD):
both capture the human body data and transmits it to the
modeling layer.

The modeling layer includes a feature extractor entity, which
fuses acquired data and forwards it to the reasoning layer.

This, in turn, comprises a data evaluation entity, which decides
whether a fall occurred or not and sends that data interpretation
to the alert system of the dissemination layer.

If a fall is detected, the alert system notifies the caretaker
entity and the emergency subsystem. Finally, the assistance
center of the emergency subsystem receives a fall alert from
the dissemination layer and forwards it as a message asking
for an ambulance.

Fig. 1. SES tree representation for the FD system.

Once the SES of the FD system architecture is defined, the
next step is the specification of the atomic models for each SES
entity described in Fig. 1. Due to a large number of atomic
models in our simulation model, we chose composing the main
flow from a model of human body data acquisition and going
to the fall detection stage. We describe them next. For space
restrictions, we show in an external link [36] how atomic and
coupled models are obtained from the SES structure.
Human Body. This is the FD system starting point. The
human body atomic model reads one dataset at a time and
implements the decision rule about which type of sensing
device is handled as a data source (wearable or non-wearable).
At the end of the process, it sends the data from the dataset
to the specific sensing device.

Fig. 2 depicts the state transition structure of the human
body atomic model as expressed in MS4 Me using DEVSNL
and java tag blocks. The system starts reading the dataset file
(state S0). While the end of the file is not reached, the system
assigns data to the wearable device at the state S1, or to the
non-wearable device at the state S2. After, the system returns
to S0 to read the following data.

Fig. 2. State machine of the human body atomic model.

Data Evaluation. this atomic model waits for a message from
the modeling layer (S0). Upon the reception of a message, it
identifies whether a fall has occurred or not. Once a fall is
detected, the status of the person being monitored is changed,
and a message is sent to the dissemination layer (S1). If the
system interprets a non-fall, it returns to a passive state and
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waits for a new message from the modeling layer. Fig. 3
illustrates the state transition structure of this atomic model.

Fig. 3. State machine of the data evaluation atomic model.

For each piece of data obtained from the dataset represent-
ing an action (a fall or an activity of daily living – ADL), as
in Fig. 2 and 3, a first verification is done to assess whether
the action is performed inside the bathroom or not.

Next, we report the simulation protocol concerning plan-
ning, experiment execution, and results analysis.

V. EVALUATION

In this section, we evaluate the nine architecture alternatives
conceived for this study. The methodological procedures used
in the experiment conforms to the guidelines defined by [37],
such as follows: the experiment protocol planning, the collec-
tion and analysis of evidence, and the results discussion.

Supplemental material about the full protocol, each dataset,
and the modeling of the FD system architectures used in the
experimentation is available at https://bit.ly/30ynLo3.

A. Planning: Experiment Protocol

Scenario Description. The simulation takes place in the
context of a home environment where older adults live alone.
The scope of the simulation is the acquisition layer of an
IoT-based FD system. These data are sent to other layers;
however, these are abstracted. We simulate the monitoring
using a combination of six devices, as shown in Table I.

An older adult may perform activities in two regions of
her/his house. Among these actions, falls can occur. If the fall
takes place in the bathroom, it will be detected by NWDs;
conversely, if it occurs in another region of the house, the
detection is made by WDs.

For the conduction of this study, we established the
following goal for this research: to assess the trade-off
between different architectural arrangements of IoT-based
FD systems using DEVS simulation models, WDs and NWDs.
We derived research questions (RQ) from this goal with the
respective metrics and associated indicators, as presented
next. The latter are pre-defined thresholds and an individual
interpretation of a measure obtained through the metric.

RQ1: What is the accuracy delivered by each architectural
arrangement?
Rationale: An IoT-based FD system can be designed using
several types of sensing devices in the acquisition layer with
different accuracy rates, as in Table II. By answering this
question, we can assess the different global accuracy delivered
by each one of the architectural arrangements under evaluation.
Metric: The metric used for answering this RQ is accuracy

(M1), i.e., the percentage of falls accordingly detected by
the architectural arrangement. As we used four datasets, M1
will be calculated for each dataset, and their average will be
computed. Thus, we use the following equation for M1:

M1 = (WF +NWF )/DF (1)

, where WF is the number of falls detected by the
wearable device, NWF is the number of falls detected by
the non-wearable device, and DF is the number of falls that
the dataset contains. Indicators for accuracy are defined as
follows: high if the total accuracy measured is greater than or
equal to 90%; medium (from 70% to 90%); low (from 50%
to 70%); and unreliable (less than 50%).

RQ2: What is the most cost-effective architectural arrange-
ment?
Rationale: Given different older people’s economic profiles
interested in purchasing an FD system, they should be pro-
vided with several options with both different prices and
detection ranges. This question guides researchers for offering,
via simulation, objective measures to support designers and
acquirers on the trade-off between cost and accuracy.
Metric: The metric developed to compare the architectural
arrangements is M2: Cost (C) per Accuracy (M1), i.e., how
expensive is to provide detection accuracy in each architectural
arrangement. For M2, we use the following equation:

M2 = C/M1 (2)

, where C is the total purchase cost of a given architectural
arrangement, and M1 is the overall accuracy achieved by that
same arrangement. Regarding cost per accuracy, we under-
stand that we support a user of our model to trade-off about
these measures, deciding the best architectural arrangement
based on the available budget while preserving high accuracy.
In this paper, we realize that a cost per accuracy greater than
$5.00 can be considered expensive, while the other values can
be regarded as cheap/valuable.
Experimental Frame. The tuple {M1, M2} then represents
the output variables that compose the experimental frame
under which the FD system was observed. We developed
generators for injecting the data sets elaborated during data
preparation, acceptors for checking on validity, and transducers
for implementing the metrics.
Research instruments. The DEVS simulation specification
formalism and MS4 Me IDE environment. MS4 Me supports
the development of experimental frame components to im-
plement modeling objectives [38], detailed herein in Data
Preparation.
Computational model. The simulation model was automati-
cally generated by MS4 Me IDE using the architectural design
described in Section III-B.
Conditions of execution. The simulations ran on a laptop
equipped with an Intel Core i7-5500U CPU @ 2.40GHz, with
8 GB of RAM Memory, HD of 500 GB, and running Ubuntu
18.04.2 LTS 64 bits.
Dataset selection criteria. The criteria for selecting datasets
are as follows: the dataset content should contain both falls and
activities of daily living (ADL); it should explicitly identify

https://bit.ly/30ynLo3
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the occurrence of falls, and the file format should be CSV
(or easily convertible to CSV). Given these requirements, the
datasets selected for this study were the Özdemir and Barshan
dataset [39], the Gravity Project dataset [23], and the URFALL
dataset [40].
Data preparation. We cleaned the datasets, so only the
annotated column regarding the actions remained. The orig-
inal Özdemir and Barshan1 dataset is structured in several
directories, each representing one actor and the actions he/she
performed. We took each file representing one action and
transferred it to an Excel spreadsheet. The resulting sheet
contains approximately 16,000 different actions (states).

The URFALL dataset has 903 actions; however, many were
repeated over time, i.e., several zeros represented a constant
action. We gathered these repetitions in single steps, resulting
in 90 different states, accurately as reported in the original
study: 30 falls and 60 daily actions.

Finally, the Gravity Project dataset is specified in JSON.
Then, we converted its content to CSV and the boolean
values (true/false) into 0’s and 1’s. Initially, this dataset is
partitioned into two pieces representing two different actors
(GP1 and GP2): one performs 4,207 actions, whereas the other
performs 2,754 actions. Hence, we consider four datasets in
our experiments, not only three.

The four datasets date between 2014 and 2015 with real-
world people; however, they include simulated falls since
the subjects were actors. Hence, the purported falls do not
represent actual falls (obtaining accurate fall data presents one
of the most pressing challenges for research on FD systems).
Also, those datasets are provided by wearable devices because
of the lack of datasets sourced from non-wearable gadgets. In
other words, our experiments used the four wearable-sourced
datasets for both wearable and non-wearable devices.

B. Study Conduct

We performed thirty-six simulations, one per different com-
bination of a dataset (OZBA, URFALL, GP1, and GP2) and
an architectural arrangement (ARCH1 to ARCH9).

We conducted the simulation for an entire day. Each sim-
ulation fed with OZBA took around 20 minutes, totaling 180
minutes. Due to the small size of the dataset, simulations
with URFALL took approximately one minute each, spending
nine minutes in total. Simulations with the GP1 and the GP2
datasets spent around 12 and 8 minutes each, respectively.
Thus, the total time consumed with these datasets is 180
minutes. In brief, the simulation time was 369 minutes (or
6.15 hours).

For the delivery of data to the simulation, we applied the
Stimuli-SoS approach [41]: we created artificial entities (the
Human Body atomic model in Section IV-B) representing the
surrounding environment to feed the simulation and run it.

C. Results

Results are discussed in a twofold manner: answering the
analysis of the obtained data and subsequently answering the

1Throughout this paper, we refer to this dataset as OZBA.

raised research questions.
Analyzing the Obtained Data. Table III presents the results
from the simulation experiment executed with the OZBA
dataset. The data represent the FD accuracy obtained for each
architectural arrangement according to Equation 1, as well as
the accuracy of each respective WD and NWD composing the
arrangement.

TABLE III
THE OZBA DATASET SIMULATION RESULTS.

ID Total accuracy WD accuracy NWD accuracy
ARCH1 93.28% 93.03% 95.91%
ARCH2 92.89% 92.60% 95.92%
ARCH3 91.72% 92.98% 79.82%
ARCH4 95.43% 95.20% 97.61%
ARCH5 94.70% 94.82% 93.58%
ARCH6 93.78% 95.33% 78.61%
ARCH7 69.90% 67.59% 93.27%
ARCH8 71.37% 69.23% 92.68%
ARCH9 69.62% 68.44% 81.48%

Observe that six architectural arrangements deliver a
high accuracy, ranging from 91.72% (ARCH3) to 95.43%
(ARCH4). It is noteworthy that the total accuracy is not the
sum of the accuracy of the wearable and non-wearable devices
because these are not in the same proportion, but instead as the
proportion between the falls detected by both devices and the
number of falls of a dataset (see Equation 1). For instance, the
OZBA dataset includes 3,588 falls among all its actions. Thus,
for ARCH4, the wearable device detected 3,097 falls, whereas
the non-wearable device, 327 falls. In total, the architecture
was capable of detecting 3,424 falls, which results in 95.43%
of the total falls in the dataset.

Table IV presents the simulation results using URFALL.
Again, ARCH4 shows the highest accuracy, reaching a 100%
accuracy. On the contrary, the ARCH9 presents still the worst
accuracy among the architectural alternatives analyzed.

TABLE IV
THE URFALL DATASET SIMULATION RESULTS.

ID Total accuracy WD accuracy NWD accuracy
ARCH1 90% 88.46% 100%
ARCH2 93.24% 90% 0%
ARCH3 90% 92.31% 75%
ARCH4 100% 100% 100%
ARCH5 96.67% 96.55% 100%
ARCH6 90% 92.59% 66,67%
ARCH7 70% 60% 100%
ARCH8 70% 67.86% 100%
ARCH9 53.33% 51.72% 100%

Furthermore, we also observe a more significant difference
in accuracy between the best and the worst arrangements
as well as between the first-worst and second-worst ones if
compared to the same analysis with the OZBA results. Using
URFALL, there is a 46.67% difference between ARCH4 and
ARCH9, and 17% between ARCH7 and ARCH9, respectively.
That variation is of only 25.81% and 0.28%, respectively,
using the OZBA dataset. We believe this discrepancy is
because of the small size of the URFALL dataset, with only
30 falls represented.
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By observing the accuracy of WDs and NWDs, we also
find multiple values of 100%, e.g., ARCH7 to ARCH9. These
results are not a problem in the simulation, but also due to
the size of the dataset. Therefore, we emphasize the relevance
of choosing the dataset for in-silico experimentation with
simulation to not impact on the results.

Now, consider the simulation results with the GP1 dataset,
as shown in Table V. Likewise, the architectural arrangements
with the best and worst accuracy values are ARCH4 and
ARCH9, respectively. In comparison with OZBA, there exists
a small difference in accuracy between the best and the worst
alternatives as well as between the first-worst and second-
worst ones. Regarding the GP1 dataset, these values are
28.29% and 0.96%, respectively.

TABLE V
THE GP1 DATASET SIMULATION RESULTS.

ID Total accuracy WD accuracy NWD accuracy
ARCH1 93.20% 92.74% 98.04%
ARCH2 93.25% 93.22% 93.57%
ARCH3 91.84% 93.01% 79.05%
ARCH4 95.75% 95.67% 96.62%
ARCH5 95.52% 95.35% 97.37%
ARCH6 92.63% 94.50% 74.23%
ARCH7 68.42% 65.43% 96.47%
ARCH8 69.73% 67.20% 96.69%
ARCH9 67.46% 66.50% 78.57%

Table VI shows the results of the simulation with the
GP2 dataset. Besides ARCH4, the ARCH5 alternative also
reached the highest accuracy among all (i.e., 95.49%). On
the other hand, ARCH7 and ARCH8 got accuracy values
lower concerning the ARCH9 arrangement, which presented
the worst performance using the three previous datasets.

TABLE VI
THE GP2 DATASET SIMULATION RESULTS.

ID Total accuracy WD accuracy NWD accuracy
ARCH1 92.69% 92.66% 92.91%
ARCH2 92.75% 92.64% 94.29%
ARCH3 92.34% 93.33% 80.70%
ARCH4 95.49% 95.40% 96.49%
ARCH5 95.49% 95.46% 95.74%
ARCH6 92.69% 94.02% 75.93%
ARCH7 69.72% 66.62% 98.59%
ARCH8 69.72% 67.47% 91.30%
ARCH9 71.16% 70.28% 80.65%

In comparison with OZBA, the difference in accuracy
between the best and the worst alternatives are almost the
same (i.e., 25.8%). Regarding the GP1 dataset, the variation
of accuracy with the GP2 dataset is only 3.5% lower. Now,
the difference between the first-worst and second-worst
accuracy values using GP2 (ARCH7 and ARCH8) reaches a
higher but not so significant variation (i.e., 1.44%).

RQ1: What is the accuracy delivered by each architec-
tural arrangement? Table VII presents the results from the
simulation experiment. The data represent the FD accuracy
for each different architectural arrangement and for each
different dataset used. From all the accuracies obtained for

each arrangement, we provided the average accuracy obtained
from the simulation executions with each dataset used.

TABLE VII
AVERAGE ACCURACIES OF THE ARCHITECTURAL

ARRANGEMENTS OF FD SYSTEMS.

ID OZBA URFall GP1 GP2 Average ac-
curacy

ARCH1 93.28% 90.00% 93.20% 92.69% 92.29%
ARCH2 92.89% 93.24% 93.25% 92.75% 93.03%
ARCH3 91.72% 90% 91.84% 92.34% 91.48%
ARCH4 95.43% 100% 95.75% 95.49% 96.67%
ARCH5 94.70% 96.67% 95.52% 95.49% 95.60%
ARCH6 93.78% 90% 92.63% 92.69% 92.28%
ARCH7 69.90% 70% 68.42% 69.72% 69.51%
ARCH8 71.37% 70% 69.73% 69.72% 70.21%
ARCH9 69.62% 53.33% 67.46% 71.16% 65.39%

From these data, we perceive the existence of two groups
of architectural arrangements considering their average ac-
curacies: ARCH1 to ARCH6 deliver higher values (91.48%
to 96.67%), whereas ARCH7 to ARCH9 reach lower ones
(65.39% to 70.21%). This is due to the difference in accuracy
reported in the literature by the wearable and non-wearable
devices in each architectural alternative.

On one hand, ARCH4 and ARCH5 reach a better perfor-
mance because of the higher values of the accuracy of their
wearable devices (95.29% and 92.7% in Table I, respectively).
On the other hand, ARCH7, ARCH8, and ARCH9 deploy the
combination of a smartphone and a smartwatch as wearable
equipment, which has the lowest accuracy among all devices
(68% in Table I).

As 91% of elderly falls at home take place outside the
bathroom [32], wearable devices in our simulation are more
likely to be called upon to detect falls. This explains the fact
that ARCH4 reaches the best results using the four datasets,
counting also on the highest accuracy of the non-wearable
Doppler radar device (97% in Table I), yet in a smaller ratio.

RQ2: What is the most cost-effective architectural
arrangement combining wearable and non-wearable
devices? For answering this research question, we triangulated
the accuracies obtained by answering RQ1 with the purchase
prices of each architectural arrangement (see Table II). We
present the results in Table VIII.

TABLE VIII
COST PER ACCURACY OF THE ARCHITECTURAL

ARRANGEMENTS FOR FD SYSTEMS.

ID Average ac-
curacy

Architectural cost Cost per accuracy

ARCH1 92.29% $5,528.99 $59.91
ARCH2 93.03% $309.95 $3.33
ARCH3 91.48% $148.94 $1.63
ARCH4 96.67% $5,673.00 $58.69
ARCH5 95.60% $453.96 $4.75
ARCH6 92.28% $292.95 $3.17
ARCH7 69.51% $5,733.00 $82.48
ARCH8 70.21% $513.96 $7.32
ARCH9 65.39% $352.95 $5.40

By analyzing the cost per accuracy, we offer to an FD
system designer and clients the possibility to decide on an
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arrangement to be acquired based on their requirements, needs,
and financial conditions. We observe the following findings:

• the most expensive architecture (ARCH7) delivers a low
accuracy, but it uses WDs that many people already have,
such as smart watches and smartphones;

• although the Doppler radar kit is an expensive device, it is
broadly accepted [42], since it does not hamper the user
privacy (as other non-wearable devices do, e.g., cameras);

• ARCH4 delivers the greatest accuracy and is one of the
most expensive options (Doppler radar and smartphone);

• in contrast, ARCH3, which delivers roughly 5% less of
accuracy in comparison with ARCH4, still presents a high
performance for FD (91.48%), and has an acquisition
price 36 times cheaper than ARCH4.

• Analyzing the architectures that have the lowest costs
(ARCH2-3, ARCH5-6, and ARCH8-9), we can observe
that ARCH5 offers the greatest precision.

Therefore, ARCH3 is the cheapest architectural arrange-
ment. However, with only 3 times its value, ARCH5 has 4%
more accuracy, making it the most cost-effective architectural
arrangement combining WD and NWD for FD purposes.

VI. DISCUSSION

FD systems are critical because they are directly related to
saving people’s lives. They must be tested and demonstrate
excellent results in terms of reliability before being deployed.
However, real-world testing can be cumbersome because it
usually requires a lot of resources and time. Besides, as fall
simulations are necessary, another difficulty is in recruiting
real users of these systems to test them in a safe manner [1].

In this paper, we seek to encourage the use of in silico sim-
ulations to test FD systems. This type of simulation has been
successfully used in several disciplines, such as Economy,
Biology, Social Sciences, and also in Software Engineering, to
support the visualization of the dynamic structure and systems
behaviors [19], [43]. Simulations can anticipate, at design
time, failures, and behaviors that could potentially occur at
run time and is a fundamental tool to understand physical
phenomena in the field of Engineering Sciences. It is even
more critical in the case of Healthcare Engineering as it can
help in reducing the number and duration of the necessary field
experiments; these are costly and difficult to conduct [10].

We also highlight the importance of the datasets for the
study we conducted. We adopted four datasets with different
dimensions, varying from 90 to 16,000 actions (ADLs and
falls). We showed that the use of small datasets can deliver
results that are not fully trustworthy since they can reach a
false 100% accuracy, as delivered by arrangement ARCH4
using URFALL. ARCH9 also presents an uncommon result
because its accuracy is much lower than the others. Therefore,
we perceive the influence of the datasets on the experiment and
recommend the use of a diverse group of distinct datasets for
obtaining more reliable results.

Our simulation development differs from others also in its
use of the SES to support composability. The composability
feature of SES results in significant reduction in time to
develop models for new objectives [15], [44]. Since we could

reuse the wearable and non-wearable models for specifying
the nine different variants of the architecture, we perceived an
important time reduction in our project due to the adoption
of SES structure and relying on MS4Me infrastructure. This
can represent an important reduction in total development time
when compared to other simulation formalisms or tools.

A. Limitations and Threats to Validity

In this section, we discuss the main limitations and threats
that should be taken into account when analyzing the results
and findings obtained herein.

1) Limitations of the Study: As with any research endeavor,
our study has limitations to be considered.

• External factors: We do not address aspects that interfere
with conventional’s or depth camera’s accuracies, such as
lighting and occlusions by objects. Another factor not
considered is people’s privacy due to cameras in the
bathroom. This explains why Doppler radar has been
given special attention in recent literature.

• Users adherence: We assume that elderly people wear
the devices even when they are outside the bathroom.
We do not deal with a lower detection rate due to a non-
adherence of the user, i.e., in case a fall happens outside
the bathroom, and the person is not wearing the device.

• Error-free sensing layer: Should a fall be detected, we
consider that all fall-related raw data is genuine and not
subject to errors.

• Reasoning algorithms: We are not concerned with rea-
soning algorithms for FD interpretation [45]. As the four
datasets already annotate the instant of a fall, we consider
the accuracy of sensing devices in the acquisition layer,
as reported in the literature.

• Latency: For system’s efficacy, the set of techniques for
FD, mostly in the acquisition, reasoning, and dissem-
ination layers, may well be delay-sensitive. Moreover,
datasets generally do not provide such information.

2) Threats to Validity: Threats to validity can be of four
types [46]: conclusion, internal, construction, and external. As
threats to conclusion validity, we cite those related to the
establishment of a statistical relation between the individual ar-
rangements and the total arrangement. We mitigate that threat
with mathematical functions used to associate the individual
accuracies with the global accuracies. Hence, the procedure is
auditable and repeatable.

For internal validity, we mention simulation correctness
and datasets selection. The correctness of simulation is a
constant risk, i.e., how precise is the representation and
how correct is its implementation. To relieve this threat, we
continuously checked whether the (i) number of inputs was
proportional to the number of outputs, and (ii) the accuracy
delivered by each architectural arrangement was close to the
average of the accuracies delivered by the devices involved in
each arrangement. We also submitted the simulation code to a
healthcare system expert so that he could evaluate how precise
is the representation in regards to the intended system. He
agreed that the simulation accurately represents FD systems.
Moreover, for diversifying the samples and obtaining strength
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of evidence, we used four datasets obtained from different
providers with different dimensions, ranging from 90 to 16,382
actions. This prevents an inherent bias due to the use of only
one or two specific (and similar) datasets, which potentially
would deliver similar results. Results were significantly differ-
ent in each architectural arrangement for the different datasets.

About construction validity, we cite threats related to
the FD precision in each device represented and the extent
of the FD system represented. For mitigating possible risks
associated with the former, we adopted accuracies reported in
studies of the specialized literature. On the latter, we focus
only on the IoT acquisition layer of the FD system.

As the modeling, reasoning, and dissemination layers are
not represented, our conclusions can not be generalized to
these layers, which leads to the threat to external validity. Our
findings are only related to the acquisition layer and consider
the specific architectural arrangements simulated. However,
our approach has the potential to be generalized as a technique
to predict other different architectural arrangements as well as
supporting a trade-off between accuracy and purchase prices.

VII. CONCLUSION

Simulation models have been applied in the literature to
specific domains to predict real systems’ properties and as-
sess specific attributes to support decisions about systems
architectures [16], [20]. Similarly, our study adopts simulation
models to evaluate IoT architectures concerned with FD as a
simulation application scenario.

Our work mainly contributes with a DEVS-encoded sim-
ulation model for FD systems supporting, at design time,
the trade-off between cost and accuracy of multiple archi-
tectural arrangements based on a diverse configuration of
sensing mechanisms in the acquisition layer (i.e., accelerom-
eters, depth cameras, and radar). We conducted a robust six-
hour simulation study with thirty-six different configurations,
involving nine architectural arrangements and four datasets
widely accepted in FD systems literature. Combining those
efforts with analyzing the study’s threats to validity reinforces
the strength of evidence of the achieved results.

Although our work is focused on design time, we envision
the possibility of connecting already deployed systems to
simulation models to raise what is currently known as digital
twins. Future work can investigate the adoption of DEVS
models in digital twins infrastructure so that we can integrate
detection of sudden changes in acceleration and maybe infer,
by simulation, that a fall is about to happen. Further procedures
can then be implemented, such as preventive alerts or robotic
apparatus to avoid imminent falls.
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