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Abstract—Intelligent healthcare systems are a topic of interest
in recent approaches due to novel possibilities created from edge
hardware and software development. In 2020, the COVID-19
pandemic displayed the urge to speed up technological systems
development to aid medical facilities. In this context, solutions
must enhance the experience of both patients and healthcare
professionals. Thus, we propose a novel cooperative architecture
to improve healthcare facilities involved in pandemic control. On
the one hand, this solution helps a faster recognition and link
to the patients’ data using reality augmentation resources. On
the other hand, it helps monitor the conditions of medical pro-
fessionals working in the facility and exposed to contamination
danger.

Index Terms—smart healthcare, cooperative systems, edge
computing, IoT.

I. INTRODUCTION

The usage of novel technologies for smart healthcare
employs state-of-the-art edge computing, and IoT per-

spectives [1]. For instance, these systems can be employed
to monitor patients [1] and detecting disease symptoms [2].
Furthermore, it is important to develop these cost-restrictive
systems that are also quick to deploy, as in many times, the
facilities are emergency field hospitals [3]. Hence, these tools
can manage both workers and patients in an interconnected
environment.

Kliger and Silberzweig [4] state that the COVID-19 is a
disease caused by a novel coronavirus. These authors state
that there is also an urge to mitigate in-hospital transmission.
A relevant aspect in the hospital spaces [5], requiring the
management of patients, personnel, space, and supplies. The
healthcare professionals’ exposure to contamination is also an
essential factor in the control of the coronavirus pandemic [6].

Some researchers recommend the use of oximetry to moni-
tor rapid patient deterioration. Shah et al. [7] evaluate patient-
reported oxygen saturation (SpO2) using pulse oximetry as
a home monitoring tool for patients with initially non-severe
COVID-19 to identify the need for hospitalization. Oxygen
levels best identify patients most at risk of poor outcomes.
Therefore, applying an oximeter-based detector of the decrease
in blood oxygen permits the creation of alert systems to act
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before a severe health problem. In this work, we propose using
continuous monitoring of the healthcare workers groups in
action.

In this work, we focus on the proposal and proof-of-
concept of an environmental architecture for using mobile
edge computing hardware and the IoT in the COVID-19
medical facilities. The issue in this proposal is to perform the
monitoring of several patients using mobile edge computing
hardware. This is suitable for applications with lower costs.
For instance, this helps to solve this problem for field hospitals.
This architecture employs a novel wearable solution for health-
care workers, communicating with a local server on a wireless
network server, which also works as an access point. This
server observes the conditions of the patients and workers,
providing a management window with the conditions. This
system also provides real-time information for the wearable
edge devices, available using a Head-Up Display (HUD).
Thus, the main contribution of this work is:

• A proposal and proof-of-concept of an environmental
architecture for using mobile edge computing and IoT
in medical facilities facing the COVID-19 pandemic.

The remainder of this text is organized as follows: In Section
II, we present some theoretical references approaching works
from the state-of-the-art publications related to this paper. We
display the proposed architecture for an edge-based smart
healthcare system in Section III. In Section V, we present
the results of the proposed tests in the context of this work,
providing the first insights and discussions. Finally, we present
our conclusions and final discussions in Section VI.

II. EDGE COMPUTING AND HEALTHCARE

The Internet of Things provides a fertile environment for
developing novel solutions towards healthcare. These solutions
can gather data on the physical conditions of the users and
provide this data using a web service [8]. The communication
aspect provides fast information flow throughout the time,
creating the possibility to propose, generate, and validate new
appliances [9].

Intelligent healthcare systems integrate edge devices ac-
quiring data from body-worn and body-proximal sensors.
The acquired information generates valuable insights using
data fusion, big data, and machine learning techniques [10].
Applications can employ cloud-based methods to process the
acquired data [11]. Also, another option is processing the
information in devices closer to the edge [12]. Thus, using
innovative diagnostics and real-time monitoring can provide
relevant improvement in medical facilities.
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As much as smart healthcare systems are a topic of signif-
icant interest, most applications are designed to acquire data
from people in the role of patients [13]. Nonetheless, coopera-
tive edge systems can monitor the conditions of professionals
exposed to stress and hazards [14]. This perspective enhances
the development of an edge-based smart healthcare system for
the COVID-19, aiming to aid not only the patient’s monitoring
but also the healthcare workers exposed to contamination
dangers.

What has been previously presented regarding edge com-
puting and COVID in this field are surveys [15], automated
selection of services [16], a framework exploring potential
DL algorithms to run on edge devices and cloudlets [17],
other frameworks and algorithmic approaches [18], [19], or
some fixed prototype solutions regarding another desired task
[20]. None of them target the same issue presented here. The
targeted problems are different, unrelated or even theoretical
at some points.

III. EDGE COMPUTING - ARCHITECTURE PROPOSAL

As stated, the usage of edge devices for performing co-
operative tasks is usually based on a wireless network en-
vironment, generally associated with the IoT concept [21].
The cooperation happens between edge devices and the edge
server, as they gather patients’ and workers’ data, analyzing
and providing insights for field and management workers. This
solution targets smaller scale hospitals, as larger facilities can
benefit from more powerful computing resources. Thus, the
first decision on this system’s architecture proposal is the
networking environment. As many structures are adapted or
quickly built and deployed, such as mobile field hospitals [3], a
portable solution is ideal for quickly deploying a management
structure. Finally, the network type of the solution is a Wireless
Local Area Network (WLAN), given the ranges that the
connectivity must reach [22]. Figure 1 displays the general
proposed architecture.

Fig. 1. Overview of the proposed architecture.

The WLAN-server is a local edge computing processing
center that works as an access point for wearable devices

and computer connections. This module gathers data from
all the sensor nodes in the network, performing processing
tasks to extract information and insights and providing a piece
of high-level information as feedback in wearable, mobile,
and computer terminal interfaces. This option enhances the
capabilities of the Internet of Things appliances [23], enabling
to reach higher-level insights from the acquired data.

In this context, health sensors are wearable devices worn
by healthcare professionals. In our proposal, the sensor nodes
are composed of sensors attached to single-core computer-
on-modules, powered by power banks. They perform low
processing tasks of data acquisition, pre-processing, and two-
way communication to send the gathered information and
receive feedback. Computer stations and mobile devices can
also work as interfaces for medical professionals and facility
managers.

A. Edge Computing Devices Description

Fig. 2. Face shield HUD Prototype. This device contains the camera
sensor and the workers’ health monitoring sensors.

For this work, we produced a wearable device, a prototype
of the face shield HUD. We previously built and validated
this prototype [24] over a mandatory safety device in many
healthcare facilities and using a Raspberry Pi Zero W as
its computer on module. Figure 2 displays the produced
prototype.

This wearable device’s objective is to monitor the user’s
health conditions and help retrieve information from a dis-
tance. With this device, we test some aspects of the proposed
solution. The first relevant aspect of the solution is the
computer module. Wearable appliances are usually power- and
cost-restrictive. Thus, the first decision is to use a single-core
ARM-based computer-on-module as a baseline to develop the
solution. Another essential aspect of the computer-on-module
is a WLAN-capable network board.

The next factor to consider is the sensor configuration.
Traditionally, one of the most relevant features of wearable
devices is increasing the user’s awareness of the surrounding
environment and his conditions [25]. This prototype has two
different sensors. The first one is a pulse-oximeter and tem-
perature sensor, which provides the data from its user’s health
conditions. The other sensor is a camera to acquire data from
the environment. In the context of the healthcare facility, the
camera may provide information from the patients’ medical
records using QR codes. Finally, the last aspect of it is the
feedback interface. For this matter, we proposed a head-up
display (HUD) to provide the user with high-level information.
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B. Terminal and Mobile Interfaces

Fig. 3. Proposed Interfaces Illustration.

Another aspect of the proposed architecture is the manage-
ment interfaces. These applications aid the facility managers
in the decision process. It aids both monitoring and detecting
early signs of contamination in healthcare professionals, [7].
In Figure 3, we display some examples of real-time monitoring
of healthcare professionals’ conditions.

C. Edge Computer Server Node

The network edge is composed of devices that handle
computing tasks in edge computing. The edge device must
be designed to handle such tasks efficiently and support
requirements such as reliability. Integrating the IoT elements
into the system happens through an edge computer server. This
device performs two different tasks on this system. The first
one acts as a gateway for receiving, storing, and broadcasting
data from the wearable devices and the management terminal
interfaces. The second task is submitting the acquired data to
information extraction algorithms. To achieve this objective,
we proposed using a portable device, called an edge computer
server, with the hardware requirements.This hardware presents
a Raspberry Pi4, with 4GB of RAM and 64GB storage, with
WiFi support, with an attached battery. Our tests with this
device achieved autonomy of around 12 hours of intensive
usage. This device is suitable for more processing, as the
computer on the wearable device has very limited resources.

D. System Integration

Fig. 4. Data Flow Diagram.

To understand the functioning of this system, we also
provide an analysis of the data flow. Figure 4 provides a
representation of the main components of this architecture
and the visualization of the data flow. This representation
helps to understand the expected behavior of each element
according to its components. Also, it helps to examine the
timing constraints from each part of the process.

There are three types of elements in the proposed architec-
ture. The first element is the wearable edge computing device,
represented by the face shield HUD presented in Subsection
III-A. This element gathers data from the sensors, providing
some pre-processing to turn them into information.

The central element is the Edge AI Computer/WLAN
Server. This element is a processing center in an embedded
edge computer, which also manages the network connections.
As we provide the access point in a computer, it also can
perform parallel data fusion and analysis tasks. This process
provides high-level information for other elements from the
architecture. Finally, the last element in this organization is the
management interface. In Figure 4, this element is represented
by the generic interface block. In both mobile devices or a
computer terminal, the main elements are the user’s inputs,
communication with WLAN, processing, and output.

IV. EXPERIMENTAL TESTS

A relevant aspect of distributed architectures is networking
performance. This feature directly affects the quality of the
provided services in IoT-based systems, having consequences
in the system’s real-time capabilities [26]. Thus, the experi-
mental setup evaluates the timing constraints for the data flow
and processing.

A. Real-Time as Quality-of-Service

To evaluate these aspects, we perform a QoS-based tim-
ing constraint test. The experiment was designed as a QoS
formalization, presented on similar studies concerning IoT
and Wireless Sensor Networks [27] to evaluate soft real-time
constraints as network timing constraints.

At first, we divide the experiment time in discrete intervals,
as the set T = ti, i ∈ N, where ti+1 − ti = θ, where θ
is a constant sampling time. The soft real-time deadline will
be represented by ϕ, where ϕ = k × θ, k ∈ N∗. From these
primary statements, we establish the following definitions:

Definition 1. Let D = di be the finite set of nodes consuming
and producing data from the middleware node, where i ∈ N;

Definition 2. Let E = ei be the finite set of events that each
node performs, where i ∈ N;

Definition 3. Let L = ld,e be the length of time interval that
the node d takes to perform an event e, where d ∈ D and
e ∈ E;

Definition 4. Let P = pi be the set of patterns of events to be
observed in the devices, where pi = Ei, Ei ⊂ E and i ∈ N;

Definition 5. Let O = oi be the finite set of observations of
a certain pattern pi ∈ P on the devices;

The equation that represents the elapsed time λ to observe
a particular pattern pi ∈ P is:

λoi =
∑

ld,ek |∀ek ∈ oi, oi = Opi
(1)

In this case, each device in the network composition can
have its single ϕi soft real-time deadline. Given this equation,
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let Ô be a subset of O, where λoi ≤ ϕi, ∀oi ∈ Ô. Finally,
given the sets O and Ô:

Definition 6. Let N be the number of elements on the set O;

Definition 7. Let Nh be the number of elements on the subset
Ô;

The following equation will represent the quality factor Qf :

Qf =
Nh

N
(×100%) (2)

The nodes will try to gather or update data from the server
node in parallel on each test. This result represents how often
the nodes execute a pattern of events without violating the soft
real-time constraints. This perspective allows experimenting
on how increasing the number of devices producing and
consuming data affects the network quality factor.

The proposed experiment is divided in 3 stages:
• Stage 1: Defining the soft real-time constraint;
• Stage 2: Evaluating the effect of stressing the system by

increasing the number of edge devices;
• Stage 3: Evaluating the effect of stressing the system by

increasing the number of client interfaces.
In Stage 1, we run a minimal version of the appliance,

containing one element from each class represented in Figure
4. We calculate the minimal ϕi soft real-time constraint from
this data to obtain a quality factor of 0.95 (95%). This
constraint will be used as a reference to evaluate the system
behavior when increasing the number of devices, with a block
length of θ = 2 ms. Also, we use this data to evaluate
the internal timing constraints of each device for simulation
purposes.

In Stage 2, we use the constraints from the first stage
to evaluate the system behavior when increasing the number
of edge devices. The behavior of multiple devices will be
simulated in the same computer-on-module boards used to
produce the prototype. The timing for each task on the
simulated device comes from the evaluation from the previous
stage.

Finally, in Stage 3, we evaluate the effect of increasing the
number of terminal interfaces. For this matter, we instantiate
several simulated terminals as individual processes in a com-
puter connected to the network.

These stages work as validation for the proposed archi-
tecture and an overview of the constraints for increasing the
number of devices and clients in this system. In this work, we
focused on evaluating these constraints through simulations.

B. Server Behavior Evaluation

For the second experiment, we consider the influence of
patients and medical professionals in the environment. Also,
in this case, we evaluate the timing aspect. We evaluate how
the overload of patients and medical devices in the network
influence the server capability of answering requests. For this
matter, we consider the dataflow presented in Figure 5.

For this matter, once again, we emulated multiple clients
producing and consuming data from the edge server. We con-
sider the patient appliance a temperature and pulse-oximeter

Fig. 5. Data Flow for the Experimental Setup on the Second Test.

sensor, with the same timing constraints presented in the
previous stage.

In this perspective, five categories of elements are present
in the solution. The first and central element is the edge com-
puting server. It runs an application that accepts connections
from multiple clients, storing their data and making it available
for requests for management applications in the wireless local
area network. The second and third elements are management
clients. The patient management client inquiries the data from
a particular patient using his name as an identifier. The
key worker management client retrieves the data from all
professionals working in the facility. Finally, the fourth and
fifth elements are the instances for healthcare device clients.
They work similarly, as they both require readings from the
same sensors.

To evaluate the performance of this system in the network,
we analyzed two different scenarios. Initially, we increased
the number of instances from the face shield device from 5 to
50, using a constant number of 20 patient instances. Then, we
tested a second scenario, where we increased the number of
patient device instances from 5 to 50, with a constant number
of 20 face shield device instances. We executed one instance
of the patient management client in both scenarios and another
using a key workers’ management client. The choice for this
test was to evaluate the effect of scaling each of the client
types, with a fixed number of clients for the other type. Thus,
we selected this methodology over other options for stressing
the system and testing its scalability. These numbers were
selected based on the number of patients at some field hospitals
[28].

The parameter for this response is the server answer time,
measured during the whole execution. For this matter, we
evaluated the average time for answering the requests and the
moving mean during the program execution. We executed both
tests for around 600s, changing the payload on the variable that
stresses the test every 60s.

V. RESULTS

A. Devices Internal Constraints Evaluation

Initially, we evaluate the device’s internal timing constraints.
This stage is the first step in creating a validation environment
where the conditions are similar to those faced in the field. For
this matter, we describe both the applications from the server
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and the terminal and wearable clients. Also, we experimentally
determine the timing constraints in the prototype to create
valid simulation environments.

The first element to describe is the server application.
The server keeps the updated data from all the clients in
the memory for the experimental set, sending the complete
information back to the inquiring terminal clients. Also, the
server keeps track of the timing constraints for experimental
purposes.

To support the connection of multiple clients, we developed
a multi-threaded server. Each thread is responsible for handling
a single client. The application employs two critical sessions:
Registering the latest health signals from each wearable client
and writing to the log file’s handler. In Figure 6, we display the
algorithm performed by each thread handling a single client
connection, identifying the critical sessions in red blocks.

Fig. 6. Edge Server Node Algorithm.

The processes start with the handlers for the connection cre-
ators and information. The client address and port information
also work as indexing for the client data stored in the memory.
This appliance has two types of clients: terminal clients and
wearable clients. Messages of terminal requests are identified
by “type == 1”, and messages from the wearable clients are
identified by “type == 0”.

The threads store the clients’ information in the same data
structure. Therefore, reading and writing in this structure is
the first critical section. The data coming from the clients is
interpreted (stage: “process msg”) and stored (stage: “Store
Data”), after which the thread sends an acknowledge message
(stage: “Send ack”). Requests from terminals receive data
from all the clients available (stage: “Read Data”), sending
it afterwards (stage: “Send data”). Finally, the threads share
the same log file. Thus, it is also a second critical section
(stage: “Write to log file”).

The first client type is the terminal client. This client has
two main stages: (i) acquire the data from the server, and (ii)
process data and display a screen frame using a background
template and the gathered information. Figure 7 displays the
background and an example of a card generated with simulated

Fig. 7. Visualization Prototype Application Example.

information. Finally, the threads share the same log file. Thus,
it is also a second critical section.

The wearable client has three different tasks: (i) reading
the sensors data, (ii) sending data and receiving the answer
from the server, and (iii) processing the data and displaying
a frame in the OLED display. While tasks (i) and (iii) are
internal, task (ii) is network-dependant. To determine the
timing requirements to run this application, we performed
tasks (i) and (iii) for 120 seconds on the prototype displayed in
Figure 2, measuring the times to perform both internal issues.
On average, the results obtained indicate that:

• Task (i) takes an average time of 2.25 ± 0.10 ms;
• Task (iii) takes an average time of 11.8 ± 14.3 ms.
With this data, we created an application to emulate the

client’s behavior for the stress tests (Stages 2 and 3). The
prototype also uses the application to determine the real-time
constraint in Stage 1.

B. Stage 1: Real-Time Constraints Definition
To define the real-time constraints, we evaluate the timing

requirements of the tasks performed by each device in the
context of this test. For this matter, we apply the definition
of quality factor presented in Section IV. We evaluate the
minimal configuration in this stage, with only one element of
each class running on the targeted hardware. The server runs
in a Raspberry Pi 3 Model B, the interface runs in a desktop
computer, and the wearable application runs in an embedded
raspberry pi zero w, mounted on the face shield prototype.

In this first stage, we want to establish the soft real-time
constraint ϕ. We divide the experiment time into discrete-time
blocks of θ = 2 ms. For this matter, we establish a target
quality factor of Qf = 0.95. Then, we establish the minimum
number of time blocks to obtain the desired constraint as
a factor of the number of blocks k to obtain the targeted
objective. As each class of device has its unique set of tasks,
we establish an individual constraint for each type.

TABLE I
REAL TIME CONSTRAINT DEFINITION RESULTS

Average time (ms) Requirement (k)
WEARABLE 27.6 ± 27.4 37 blocks
INTERFACE 27.7 ± 33.3 33 blocks
SERVER 54.4 ± 50.4 65 blocks

In the following stages, we use the constraints presented
in Table I to evaluate the effect of stressing the system with



2234 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 10, OCTOBER 2022

more clients and more interfaces. The server still runs in the
Raspberry Pi 3 Model B for the stress tests. One computer
runs the interface appliance, and another executes multiple
simulated client applications instances.

C. Stage 2: Stressing the System with more Wearable Edge
Devices

The first test’s objective is to understand the effect of
increasing the number of wearable devices on network per-
formance. We ran from 5 up to 50 instances of the application
that emulates a wearable device’s behavior on the network for
this test. During the whole period of the test, we executed a
single interface application.

At first, we determined the overall values for the quality
factor from the non-variable elements. From our tests, during
the whole period, the results indicate that:

• The quality factor for the interface was Qf = 0.989;
• The quality factor for the server was Qf = 0.937;

Fig. 8. Quality Factor Test Results.

Figure 8 displays the results for the quality factor test. The
loss of quality when increasing the number of instances in the
system was around 1%. This effect indicates that this system
architecture can gather and manage data from various devices
without compromising the soft real-time constraint. Also, the
other constraints faced a low compromising, enforcing this
preliminary conclusion.

D. Stage 3: Stressing the System with more Terminal Devices

In this test, we want to understand how the applications
that demand a higher amount of data respond to concurrency
stress. In this case, we varied the number of emulated termi-
nal devices. The terminal devices receive the data from all
connected clients for the management applications. Again, we
executed from 5 up to 50 instances of the application. During
the period of the test, we emulated 20 wearable clients.

At first, we determined the overall values for the quality
factor from the non-variable elements. From our tests, during
the whole period, the results indicate that:

• The quality factor for the wearable devices was Qf =
0.986± 0.001;

• The quality factor for the server was Qf = 0.885;

Fig. 9. Quality Factor Test Results.

Figure 9 displays the results for the quality factor test. In
this case, increasing the number of instances significantly jeop-
ardizes the real-time feature of this application. The decrease
in the quality factor on the server enforces this trend. This
result indicates that, as much as possible, it is interesting to
execute most of the data processing in the edge server, as
broadcasting large amounts of data can decrease the reliability
of the architecture itself.

E. Server Behavior Evaluation

Fig. 10. Performance Test Results.

As presented in Section IV, this last test evaluates the effect
of clients overload in the system behavior. Figure 10 displays
the results obtained for the tests. We display local results
for the moving average during the test in gray. The red line
indicates the system’s average time to process a request and
send the result.

For both tests, we took a moving average from 100 subse-
quent samples. In the first test, the average time required to
answer a single sample was 116.9 ± 19.11 ms. The moving
average displays that the average time does not vary much
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during the execution, with some outlier values. This first result
indicates the system stability, even when stressed with more
devices. From the second test, we extract that the average
time constraint was 121.8 ± 73.28 ms. Although the moving
average also mainly displays that the expected behavior is
similar to the first test, i.e., stable around the global average,
more outlier values are detected, reflecting a more significant
standard deviation. Figure 11 displays the density plot for both
experiments. They confirm that the majority of the results are
centered around the average value indicated by the red line.

Fig. 11. Density Plot for the Performance Test Results.

VI. CONCLUSIONS AND DISCUSSION

In this work, we proposed an edge computing cooperative
architecture for medical facilities, primarily directed to aid
the COVID-19 exposed professionals. The architecture is an
intelligent healthcare wearable-based system with portability
and ease to deploy. To validate this architecture, we presented
a complete prototype environment to establish and test the
devices’ real-time capabilities. Finally, we also evaluate how
stressing the system’s variables affect real-time performance.

Smart healthcare systems based on the Internet of Things
and Wearable Technologies are a topic of keen interest, as
displayed in the first sections. There is a particular urge
to attend the medical community with low-cost and secure
deployment solutions. In this context, we propose a novel
wearable device created over the protective face shield. This
design is widely employed in the field medical facilities to
avoid contamination. This device has a HUD to present useful
high-level information for the user. The edge computer server
is an embedded computer-on-module solution with WLAN
support and capable of data-processing tasks. Although not
every hospital environment supports wi-fi, we assess some in
which it is possible to perform this deployment.

We performed real-time constraint evaluations for systems
with networking features to validate the architecture capabili-
ties. This formalization considers both internal processing and

network-related events to establish the real-time constraints.
From the test results, we understand that the addition of
wearable edge devices concurrently producing and feeding the
server with data does not jeopardize the quality of the proposed
architecture. Nevertheless, as the interface consumes more
bandwidth, requiring more data to run its application, the addi-
tion of further elements deteriorates the quality of the provided
service. The server behavior tests also indicate that the system
bears the usage by many parallel clients, with some stability
guarantee. In the test appliance, the system was capable of
processing around eight requests per second. This last test is
also an indicator of this application’s feasibility. Future work
involves confirming these trends by performing in-field tests
with the proposed devices. This solution is nonetheless limited
to small-sized facilities. To develop a system in scale for
larger spaces, more computational resources and investment
are required.
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