
2388 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 11, NOVEMBER 2022

Open-Set Classification Approaches to Automatic
Bird Song Identification: Towards Non-Invasive

Wildlife Monitoring in Brazilian Fauna
Tiago Fernandes Tavares

Abstract—Bird song identification has mainly been approached
as a closed-set classification problem; that is, all samples are
known to be from one of the classes known by the classifier.
However, wildlife monitoring using bird songs is closer to an
open-set classification setting, as the classifier is required to
predict if a sample comes from an unknown origin, like an
environmental sound or an unrelated animal. Furthermore,
current approaches to bird song classification assume that the
model can access the whole dataset and build optimal projections.
This is not a realistic scenario in Brazil as the country has
thousands of species, and it is unfeasible to build a dataset
containing a representative diversity of samples of all of them.
This work analyzes algorithms that can be used for the open-
set classification of bird songs. The analyzed algorithms can fit
models using data from one or from only a few species. The
investigation revealed many current technical difficulties and
highlighted several opportunities for future work in this field.

Index Terms—Wildlife monitoring, open-set classification, bird
song identification, Brazilian fauna.

I. INTRODUCTION

P arallel to the unquestionable increase in important devel-
opment aspects such as life expectancy [1] and literacy

rates [2] all over the world in the last few centuries, the Earth
environment has also suffered from diverse consequences of
unplanned human action [3]. The need to maintain the human
development achieved so far and simultaneously mitigate
the unwanted environmental consequences calls for planned,
sustainable development endeavors in the future [4] [5].

Sustainable development requires both anticipating and
measuring the diverse forms of human impact [4], in special
while growing agricultural areas [6]. This can be performed
using weather stations or sensor systems, which are able to
detect changes in the physical or chemical properties of a
particular environment. However, these sensors usually have
technical problems, like being slow (as weather, for example,
takes years to change in response to human action) [7] or
unable to reach a great area (such as electronic detectors,
which can only reach their immediate surroundings) [8].

A possible solution to avoid these problems is to use animals
as bio-sensors to detect pollution in greater areas [9], which is
particularly interesting in countries with large biodiversity like
Brazil. This proposal’s underlying idea is that animals tend to
disappear from particular regions if they sense threats, which
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might be linked to invasive human presence [10]. Hence, the
presence or absence of particular animal species within an area
can be indicative of that area’s level of pollution [9].

Monitoring wildlife, however, can be difficult because an-
imals can commonly camouflage well among the vegetation
[11], thus creating a need to either identify typical animal
paths or to perform expeditions to manually count them [12].
However, animals can be identified by automated devices using
computer vision on a camera feed or machine listening on a
microphone feed [11]. Between these two solutions, computer
vision tends to fail more often because it requires direct animal
sight, which is often unfeasible, whereas machine listening can
deal with omnidirectional acoustic data, which can potentially
reach larger distances [13].

There are many animals that use acoustic communication. In
the terrestrial fauna, typical examples are insects (like cicadas)
[14], amphibians (like frogs and toads) [15], and birds. The
latter category has received a great deal of attention from
the scientific community in the last few years, and there are
sources that make bird sounds available for research.

Such sources have been used in many works that aim to
automatically identify bird species solely from their sounds
[13], [16]–[18]. They have used a diversity of datasets, and the
results are promising. One characteristic of all current methods
is that they assume that bird species identification is a closed-
set classification problem.

In a closed-set classification problem, all elements yielded
to the classifier in the evaluation stage are known to have been
presented during the fitting stage. This is the case in human-
interactive apps or in software aimed at scientists because
in these applications, a user selects what sounds should be
classified, and is supposed to know, a priori, that a particular
sound was emitted by a bird. However, this is not the case in
environmental monitoring, as in this application, the classifier
is continuously exposed to a diversity of unknown sounds.

This scenario, shown in Fig. 1, is known as an open-set
classification problem [19]. Open-set classification problems
have shown to be much harder than their closed-set counter-
parts but are closer to the reality of many applications. In
open-set problems, the classifier tries to associate each input
to a known class and, if necessary, it can label the input as
“unknown”, indicating that the input probably does not belong
to any of the classes learned during fitting.

The difficulty in open-set classification lies in the fact that
unknown samples can be different from the known ones in
many different ways. Also, unknown classes are not presented
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Fig. 1. Closed-set and open-set classification problems. Open-set
classifiers are able to identify if an input sample does not belong
to any of the known classes.

to the classifier during fitting. Consequently, it is hard to find
adequate decision boundaries for the unknown classes.

Open-set classification for bird sounds is especially relevant
in Brazil because it is unfeasible to gather a uniform, balanced
dataset representative of each of the more than 1800 described
species that live within the country. Online databases contain
recordings of only a fraction of these species, recorded with
different equipment, in different specific environmental con-
ditions. This can lead classifiers to mistake, for example, the
sound of a particular river or the distortion of a particular
audio recorder with a specific bird’s song.

This work investigates the performance of different classi-
fication algorithms for open-set bird song classification and
compares them with their closed-set counterparts. It also
discusses their possible usages in model-sharing ecosystems.
Lastly, this work brings forward how open-set classification
allows for a sustainable growth model towards a sustainability
tool.

II. RELATED WORK

Automatic bird song identification has been researched at
least since the 1990s [20]. Until the last five years, most
approaches for this task consisted of extracting features from
labeled audio files and then using classification algorithms in
standard machine learning pipelines [21]. Research work in
this field has used a myriad of different datasets and techniques
to build data-driven classifiers, and results were compared
using standard metrics such as average class accuracy, recall,
precision and f1-score.

More recently, deep-learning techniques have been obtain-
ing state-of-the-art results in many classification problems for
many years now [22]. However, commercial software for bird
song classification still mainly relies on standard techniques

such as Hidden Markov Models (HMMs) and handcrafted dig-
ital signal processing techniques for noise removal [23]. Deep-
learning has been avoided in commercial software because its
performance quickly decreases when the number of species in
the dataset grows [21], [24], and, furthermore, it acts as a black
box, making it impossible to interpret the reasons underlying
its predictions, hence harming its use in real environments
[24].

This non-interpretability characteristic of more complicated
models make its comparison restricted to standard metrics.
This means that, although some systems can reach outstanding
metrics, it is not possible to anticipate situations and use cases
in which the model is likely to fail. Consequently, further
development in the field can generate little insight other than
improving metrics in a development set.

Most work on automatic bird song classification assumes
that any input sample belongs to a class present in the training
set, which can lead to very good classification results [25].
Some works have used either an energy threshold or a special
class to detect noise [21]. However, both of these scenarios
can lead to systems biased towards noise present in the
development set.

This work analyses open-set classification systems that can
be entirely explained by humans. For such, it combines using
simple classification algorithms and feature projections, and
assesses the effects of increasing the number of classes in
the dataset. It finds that an underlying problem in bird song
classification is finding a suitable representation, that is, future
efforts should focus more on feature extraction steps than on
more complicated classification procedures.

III. METHODS

The classification system follows a typical processing
pipeline for audio information retrieval [26]–[28], as shown in
Fig. 2. First, each audio file is converted to a feature vector that
aims to represent its acoustic content. The feature vectors are
split into non-overlapping train and test sets, and the train set
is used to estimate the classifier parameters. Then, the feature
vectors in the test set are yielded the classifier, which predicts
their class labels. In the open-set classification setting, one
of the possible class labels is “unknown”, meaning that the
corresponding input sample of the test set does not correspond
to any of the classes present in the train set.

Audio
signal Vector Train/test

split Classifier Class label

Train set

Test set Prediction

Development

Fig. 2. System overview. Audio signals are converted to vectors which
are yielded to classification models. The models generate class labels
for each of the inputs.

The dataset that drives this process is described in Section
A. The process that converts audio files to their vector rep-
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resentations is discussed in Section B, and the classification
algorithms are described in Section D.

A. Dataset

The dataset used in this work consists of audio recordings
of birds from Brazil. The dataset was downloaded from
the Xenocanto [29] website using webscrapping, comprising
all recordings whose location was labeled as “Brazil”. The
recorded bird’s common name was used as a ground truth
species label.

In total, the dataset contains data from 1539 species, but,
as shown in Fig. 3, most of them have only a few recordings.
Using too few recordings for a species can harm the fitting and
evaluation process because environmental noises or recording
conditions can easily become confounding factors and gener-
ate misleading results. To mitigate this situation, only species
with more than 50 recordings were used, resulting in a total
of 93 unique labels.
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Fig. 3. Number of recordings for each bird species (indexed to
improve visualization clarity) in the dataset. Although the dataset
is wide regarding the number of species, most of them have only a
few recordings. Only species with 50 or more recordings were used
in the experiments.

B. Vector Representation for Audio

Currently, there are many techniques that allow mapping
audio files to unique vectors, which are applicable to a myriad
of situations. More recently, deep learning techniques have
been used to derive representations directly from data. In this
work, the model-sharing idea imposes important restrictions
on the vectorization.

In the model-sharing paradigm, the dataset is, a priori,
unknown, except for a few points or classes. Consequently, it
makes little sense to use auto-encoders, as they are evidently
dependent on data related to all classes of the dataset. Also,
this restricts the possibility of feature-wise standardization, as
the mean and standard deviation of each feature can greatly
change among classes.

Consequently, this scenario calls for a fixed, well-defined
feature calculation process. Such process is accomplished by
first re-sampling recordings to a sampling frequency of 22050
Hz and then normalizing audio samples to zero mean and
unit variance (thus mitigating the effects of recording birds
at different distances) and then calculating frame-wise, pre-
defined features in sliding windows of known length (in this

work, the window is 2048 samples long and the step between
two subsequent windows in 512 samples) and then calculating
statistics that measure the feature behaviors through time.
After that, feature vectors are independently normalized to unit
norm, which brings the absolute value of all elements in the
vector to the range [−1, 1].

It is hard to devise feature sets that are suitable discrim-
inators for both known and unknown bird species, but it is
reasonable to assume that different bird songs provide different
stimuli to the human ear. Because of that, the framewise fea-
tures calculated for this work are the Mel-Frequency Cepstral
Coefficients (MFCCs) from 2 to 12 (that is, 11 coefficients).
The first MFCC is excluded because it represents the signal
energy, which is obviously non-representative of the signal
content as recording conditions can vary.

After calculating the framewise MFCCs, their first and sec-
ond order differentials are calculated, resulting in 33 framewise
features. The first and second order differentials are important
because they model sequential dependecies between frames.
The features are summarized into a single vector containing
the mean and standard deviation of the framewise MFCCs
and the standard deviation of the differentials, resuting in a
44-dimension summary vector for each audio file. The mean
of the differentials is not used because it accounts for drifts
and non-oscillatory behavior in the audio files, which is not
expected to occur in samples longer than a few seconds. Their
standard deviation, however, is used because it accounts for the
variation in each MFCC, which is related to types of variations
in each critical band.

Importantly, the feature set cannot be arbitrarily large.
This is because there is a very limited amount of recordings
available for each species in the dataset, thus using feature
vectors with higher dimension can increase the probability that
elements unrelated to birds, like environment sounds or equip-
ment filters, become confounding factors in the classification
process. For this reason, this work refrains from using much
of the existing features in the literature, even if they could
potentially lead to greater benchmark results.

C. Experimental Setup
This works compares the results in two different experimen-

tal setups: the closed-set experiment, which is similar to most
of the literature, and the open-set experiment, which is more
rarely explored. These setups are described next.

1) Closed-set Experiment: The most commonly studied
scenario in bird species identification is the closed-set clas-
sification. In this case, all samples in the test set are known
to be drawn from one of the classes that exist in the train
set. Although this is not a realistic use case for environmental
monitoring, it provides an upper bound to the expected per-
formance in the open-set scenario, and can be used to draw
important insight from data.

The closed-set experiments discussed in this section com-
prise randomly selecting N species from the whole dataset,
and then dividing the samples from the selected species into
train and test sets. Then, each classification algorithm is trained
using data from the train set, and evaluated using normalized
accuracy in the test set.
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The experiments were performed for increasing values of
N , highlighting the effects of using more classes, thus pro-
gressively increasing the task’s difficulty.

2) Open-set experiment: In the open-set classification ex-
periment, classifiers required to either label an input as be-
longing to one of the known classes or to label that input as
belonging to a “unknown” class. This is clearly harder than
the closed-set experiment.

The open-set experiments discussed in this section comprise
randomly selecting N species from the whole dataset to form
the “known” set, and then dividing samples from these species
it into train and test sets. The train set is used to estimate
both the classifier parameters and the rejection threshold.
In prediction, the algorithms can output “unknown” as a
prediction. Each classification algorithm is evaluated using
normalized accuracy in the test set.

Also, the classification algorithms are yielded samples from
classes that are not part of the “known” set. In this second
task, the classifiers are expected to always predict “unknown”.
Each classification algorithm is evaluated using the normalized
accuracy of these predictions. Similarly to the closed-set ex-
periments, the open-set ones were performed using increasing
values of N .

D. Classification Algorithms

The classification algorithms used in this work (K-Nearest
Neighbors, Naive Bayes, and Support Vector Classifier) are
well-known and broadly used in many fields. They were
chosen over more complicated models because they can be
fully explained using simple principles of linear algebra and
statistics. However, their usage in the open-set experiments
require some adaptations, as discussed next.

1) K-Nearest Neighbors: The K-Nearest Neighbors clas-
sifier (KNN) works by storing all feature vectors v in the
training set together with their corresponding class. Then, for
prediction, it calculates the Euclidean distance between the
input vector o and each of the stored vectors, selects the K
ones that are closer to the input and returns the class that
appears most frequently among these K nearest neighbors.
This work used K = 5 based on experiences with other audio
datasets.

This simple, cost-effective solution can achieve competitive
results. Due to its non-parametric nature, a larger KNN model
can be built by simply using the stored vectors of smaller
models. Henceforth, a large model for bird detection can be
built by simply sharing feature vectors, that is, sharing models
instead of sharing raw data.

In a closed-set experiment, the classifier is forced to as-
sociate all input samples with a known class. However, the
open-set setting requires the model to reject samples, that
is, associate samples with the “unknown” class. Because the
model relies on Euclidean distances, it is possible to find a
rejection threshold l such that, if

min
i

||vi − o||2 > l, (1)

then the input can be considered too distant from the known
classes, hence it can be labeled as belonging to the “unknown”

class. The rejection threshold was estimated by first calculating
mini ||vi − o||2 for all samples in a validation set, and then
using l as the 90-percentile of these values.

2) Naive Bayes: The underlying idea of a Naive Bayes
classifier is to use training data do estimate a probability
distribution for the observed feature vectors o given their
known class Ci, that is, P (o|Ci), and then, in the prediction
stage, use Bayes’ Theorem to estimate the probability of a
sample belonging to a class given its feature vector, that is,
the posterior probability P (Ci|o). In a closed-set experiment,
the classifier simply predicts the class with higher P (Ci|o),
but in an open-set configuration it is necessary to estimate
when a sample does not belong to any of the known classes.
Assuming that samples from unknown classes present a lower
posterior probability in relation to the known classes, sample
rejection can be performed using a threshold l such that, if

max
i

P (Ci|o) < l, (2)

then the sample is assumed to be too different from any known
classes, thus its class is unknown.

The threshold l was estimated by calculating the minimum
posterior probability for each sample in the training set, then
selecting the 10-percentile of that series. This means that, if
the train and test sets have the same sample distribution in
the feature space, we can expect to wrongly associate samples
with unknown classes around 10% of the time.

Because all distributions P (o|Ci) are estimated indepen-
dently, a different Naive Bayes classifier model can be trained
for each class, and then all models can be combined in a multi-
class classifier. Similarly to the KNN classifier, this allows for
distributed model training, which favors building communities
based on sharing models instead of sharing data.

3) Support Vector Classifier: The Support Vector Classi-
fier (SVC) [30] works by combining risk minimization and
regularization to find an optimal hyper-plane that separates
samples in a high-dimensional projection. The SVC uses less
computational resources that modern neural networks, but
frequently achieves competitive results. The SVC allows to
estimate posterior probabilities relating classes to observed
vectors (P (Ci|o)) based on normalizing the distance between
the observed vector and the hyper-planes. This work used
the hyperparameters µ = 10−7 and C = 100 based on
experiments with other audio datasets.

These probabilities can be used similarly to those discussed
in the Naive Bayes classifier (Section D2). Likewise, a thresh-
old can be found using the 10-percentile of the posteriors of
the training set, and samples that satisfy Expression 2 are
considered to belong to an unknown class.

Differently from the Naive Bayes classifier, the SVC is
capable of using the multiple classes in the training set to
generate separation boundaries. This commonly leads to better
classification results, but makes it necessary to re-train the
model’s parameters if a new class is added to the model.

IV. RESULTS

Fig. 4 shows the normalized accuracy (that is, the mean
of the class-wise accuracy) and the unweighted class-wise
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average f1-score for the closed-set and the open-set classifiers
considering only the known classes. Clearly, the closed-set
classifiers have a greater performance, as they do not need
to classify samples as “unknown”. With the increase of the
number of known species, the performances of the closed-set
classifiers decrease and become closer to those of their open-
set counterparts.
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(a) Normalized accuracy.

10 20 30 40 50 60 70 80 90
# of known classes

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

F1
-S

co
re

KNN, open
Naive Bayes, open
SVC, open

KNN, closed
Naive Bayes, closed
SVC, closed

(b) F1-Score.

Fig. 4. Unweighted class-wise average results for closed- and open-
set problems for all tested algorithms.

In general, KNN performed worse, and SVC performs best
among these classifiers. This has been observed in other audio-
related classification problems. However, the performance
difference decreases as the number of classes increase in the
experiment.

Fig. 5 shows the accuracy for the samples of unknown
classes for each classifier. In this test, only samples from
unknown classes were presented to the classifier, hence this
rate can be interpreted as a one-class prediction accuracy.
Interestingly, this recall rate does not vary significantly when
the number of classes increase.
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Fig. 5. Classification accuracy for samples of unknown classes.

It is usual to use confusion matrices to detect biases in
classifiers, but our dataset has 96 classes, which would make
the confusion matrix too large to display and discuss. Because
of that, we use the histogram of the class-wise F1-Score, as
shown in Fig. 6, as basis for our discussion. As it can be seen,
KNN and Naive Bayes tend to present poor performance in
a large number of classes, while this tendency decreases for
SVC.
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Fig. 6. Histogram of class-wise F1-Scores in the closed-set experi-
ment.

Although classification accuracy is an important benchmark
measure, the sample organization in the feature space can give
important insight towards future work. Fig. 7 shows a 2D
Principal Component Analysis (PCA) projection of the feature
space using N = 5 classes. It is possible to see that classes
do not form specific clusters, which can explain the relatively
low classification results.
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Fig. 7. PCA projection of feature space when using 5 species. The
calculated silhouette score was −0.08.

However, the PCA projection can be misleading, as class
clusters might be organized in manifolds. This situation can
be analyzed using a T-SNE projection [31], as shown in Fig.
8. The T-SNE projection shows that the data seems to form
small clusters that are primarily populated with samples from
one or two classes.

Both PCA and T-SNE projections show a high overlap
between classes, agreeing with their low silhouette scores,
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Fig. 8. T-SNE projection of feature space when using 5 species. The
calculated silhouette score was −0.07.

which indicates the dataset is hard to classify. However, not
all classes overlap with all others. The projections indicate,
for example, a stronger separation between blue and orange
points than between purple and green points.

This highlights a property that emerges jointly from the
audio files in the development set and their representation:
some species are more easily identified than others. This
corroborates with the results shown in Fig. 6, which clearly
display some classes having higher F1-Scores for the SVC
classifier. Importantly, this is a characteristic of the features
that represent audio files, hence other feature sets could lead
to different results, meaning that results are highly dependent
on the specific species that are present in the dataset, and con-
sequently, building classification systems requires analyzing
each specific bird song dataset.

V. DISCUSSION

Bird species identification from audio is a known problem
and has had several proposed solutions in the last years, but
it has been consistently approached as a closed-set problem.
Although there is a finite (even if slowly changing due to
evolution and extinction) number of existing bird species in
the world, it is necessary to have at least some tenths of audio
samples related to each species from a particular location to
build a dataset in order to be able to account for different
recording environments and equipments. As shown in Fig. 3,
Xenocanto, one of the largest bird sound archives in the world,
cannot provide such amount of material for a large country
such as Brazil.

Importantly, all data used in this work comprises birds from
Brazil. This means that results are only applicable to Brazilian
birds. However, the applied techniques do not rely on any
assumptions that are exclusive to Brazilian birds, henceforth
they can be tested in songs acquired in other locations.

A characteristic of current datasets that harms the devel-
opment of wildlife monitoring systems is that they focus on
labeling samples according to bird species, but have little
to no metadata regarding the types of noises also present
in the recording. It is likely that some types of noises are
more harmful towards identifying particular bird species, that
is, some are more harmed by city noises, others are more
likely to be confused with frogs, and so on. Such fine-grained
evaluation can be important to anticipate system failures if
bird identifiers are used in automatic, open-air settings.

Regardless of the data availability, there are several technical
challenges that can already be tackled. As shown in Section
IV, one of the most important ones is to find feature spaces
that lead to a better separation of species without requiring
data from all (or several) species. This would allow changing
MFCCs, which are inspired in the human hearing system, with
other features that could be more closely related to the bird
sound production process.

It is important to highlight that the output probabilities and
distances yielded by the Naive Bayes and the KNN could be
calibrated using Pratt scaling. However, because Pratt scaling
consists of fitting data to a monotonic curve, the percentiles
would remain the same, which means that the results would
not change. Nevertheless, Pratt scaling could lead to a more
elegant mathematical formulation, and could be used in future
implementations.

Last, it could be relevant to further study algorithms for
the open-set classification problem. There are some more
recent proposals that could inspire interesting solutions for this
problem, such as the Siamese networks and their capability to
learn manifolds from data, or using transfer learning to devise
features from data in other domains. These can be interesting
challenges for future work.

VI. CONCLUSION

This work investigates the open-set classification problem
of identifying bird species from audio recordings of their
songs, which is related to wildlife monitoring applications.
It also investigates the constraint that models for identifying
particular species can be created without access to a large
amount of data. This technical constraint is necessary for bird
identification models that can be used in Brazilian wildlife
monitoring in a short term, as building a larger dataset is a
task that can take many years.

Results indicate that devising features more related to bird
sound production processes could lead to improved accuracy,
even if the used classifiers are not changed. Also, the evalua-
tion methodology can be improved by assessing the impacts of
using different environmental sounds as inputs to the classifier.
Last, future work could comprise using modern classification
algorithms.

The open-set classification problem for bird song identifi-
cation enabling automatic wildlife monitoring is yet far from
being completely solved. This work proposes a step towards
this solutions, and has highlighted some of the technical
challenges that appear with these constrains. They can be
tackled in the future, in further steps towards using digital
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signal processing and machine learning to aid in sustainable
development.
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