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Abstract— Latin America’s energy transition involves the 

massive integration of sustainable energy, different than hydro, at 

large and small scale, consumer empowerment, and the adoption of 

emerging information and communication technologies (ICT) in the 

entire electricity sector. These factors boost the usage of Artificial 

Intelligence (AI) to transform the traditional energy industry in a 

more complex cyber-physical ecosystem. But unlocking the full AI 

potential requires understanding working principles, current 

existing applications, and its comprehensive impact on the energy 

value chain. This paper discusses the role of AI in this context, 

emphasizing on the key factors for successful implementation in the 

region and proposes an AI maturity model for the energy transition 

that allow to determine the status and gaps for the AI adoption.  

 
Index Terms— Artificial intelligence, maturity model, energy 

transition, power systems, smart grid, machine learning, Latin 

America 

I. INTRODUCTION 

nergy transition is marked by the so-called 3D paradigm: 

Decarbonization, decentralization and digitalization. 

Decarbonization refers to the integration of renewable energies 

into the energy matrix for the purpose of replacing the 

traditional fossil fuel-based resources with cleaner energy 

sources such as solar and wind power, characterized by low 

emissions and the usage of inverter-based technologies. On the 

other hand, decentralization refers to the massive integration of 

distributed energy resources (DERs) and Behind-the-meter 

technologies into distribution networks that aims at enabling a 

more active participation of electrical demand. Finally, 

digitalization implies transforming the current electricity 

business, through information and communications 

technologies (ICT), into a more efficient, intelligent, and 

consumer-oriented business.  

Whereas the energy transition poses new challenges and 

opportunities to the electricity sector, it is necessary the study 

of key success factors that allow an effective evolution toward 

a more sustainable, resilient, and intelligent transmission and 

distribution networks in which ICT are playing an enabler role. 

Among the emerging ICT trends, Artificial Intelligence (AI) 

receives special attention in different fields of knowledge since 

it provides machine with human-like capabilities to perform a 

broad variety of specialized tasks, even outperforming model-

based classical approaches.  

Although AI applications for the energy industry have been 

developed since 1980s [1] (mostly rule-based, logic-based and 

experts systems approaches), those based on modern 

approaches are considered the most promising. Machine 

Learning techniques, a subset of AI studying the algorithms and 

models that allow machines perform a task without being 

explicitly programmed to achieve it, have a tremendous 

potential that could bring to power and distribution systems [2]: 

Grid flexibility, improved reliability and security, renewable 

resources integration, automated data analysis, fast and 

intelligent decision-making, efficient demand response, 

improved generation and demand forecast, and cost reduction 

from optimal operation. Such AI potential can support and 

accelerate the energy transition, provided that an understanding 

of the AI principles and enabling factors for developing and 

deploying AI applications for the energy transition exists.  

However, despite its potential, AI’s use in the energy sector 

is limited [3]. In Latin America, the lack of talent and high cost 

of technology have been identified as main obstacles to AI 

adoption [4]. Besides, recent advances in a fast-evolving AI 

industry altogether with the ongoing changes derived from the 

energy transition, make difficult to understand the 

comprehensive impact and potential of AI in this context, 

leading to misguided or incomplete strategies to cope with 

current and upcoming challenges. Such potential and impact are 

worth studying, specially emphasizing on the Latin America 

context for the purpose of accelerating the transition towards a 

greener energy future. Although energy transition brings new 

investments and new services markets in which AI can play a 

decisive role, this work is centered on the technical and 

technological aspects, providing valuable insights to 

understand where and how AI can be used in the energy value 

chain to address the challenges derived from the energy 

transition in the Latin America region.  

Additionally, this paper presents an Artificial Intelligence 

Maturity Model for Energy Transition (AIMMET) to quantify 

the degree of AI adoption within companies of the electricity 

sector under the ongoing changes. AIMMET results aim at 

understanding how and where AI is used, but also about how 

fast or advanced is the adoption within a company in 

comparison to others in the sector.  

This paper is structured as follow. Section II describes the 

challenges and relevant aspects of the Latin America’s energy 

transition. Section III reviews modern AI methods and 

principles. Section IV discusses AI applications for energy 

transition, emphasizing the Latin America’s energy industry. 

Section V presents the proposed AI maturity model for the 

energy transition. Finally, conclusions are presented in 

Section V. 
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II. ENERGY TRANSITION IN LATIN AMERICA 

 Energy transition in the 23 Latin American countries share 

the same global concerns on energy’s decarbonization, 

decentralization and digitalization. Latin American Energy 

Organization (OLADE) has announced the regional renewable 

goal of 70% by 2030 [5], as evidence of the region commitment 

towards the environment. Although hydropower is the 

predominant energy source in Central and South America 

(approximately 60%), non-hydropower renewables (wind, solar 

photovoltaic and solar thermal) are gaining space by replacing 

fossil fuel-based resources, as seen in Fig.1. Brazil, México, 

and Uruguay lead the wind installed capacity in the region with 

more than 70% of the total, whereas Chile has the largest solar 

capacity installed (1 GW) in Latin America, taking advantage 

of the great potential of the Atacama Desert.           

From the regulatory perspective, policies to foster greener 

energy resources play a decisive role to attract investments and 

further development of market-based financing schemes for 

renewables. Power sector policies in the region include 

auctions, with over 54 renewable energy auctions identified in 

12 countries, and grid access policies, identified in 13 countries 

[6]. However, a successful energy transition in Latin America 

implies to overcome other challenges, summarized in Fig.2., 

with singular characteristics for this region. 

Despite the vast area covered by the Latin America’s 

countries that houses complex geography and a wide variety of 

climate, ranging from dry desert-like areas to humid forest, 

urban centers concentrate the largest density population thus 

largest centers of energy consumption, away from where 

generation resources are located, posing several challenges for 

large-scale transmission infrastructure installation across the 

countries. DERs emerge as an alternative to move the energy 

supply near to major load centers, minimizing transmission 

losses (around 16%, double the global average [7]) and 

congestions associated with long transmission corridors that 

connect remote areas with abundant natural resources to the 

main cities, or maximizing grid reliability of weakly 

interconnect or radial (single path of connection) systems, 

typically small distant villages, less-densely populated rural 

areas or industrial facilities. Although existing DERs in Latin 

America include already biomass, small-scale hydro or thermal, 

energy transition would integrate also solar and wind at 

distribution or household levels, where these resources would 

enable decentralized control and ancillary services provision. A 

research conducted by the firm Guidehouse Insights [7] 

conclude that the region has the world’s fastest growing 

microgrid market, with regional capacity growing from 194.9 

MW in 2019 to 2919.4 MW by 2028. 

At the same time, urbanization means accessible digital 

services and the Internet coverage to more people, boosting the 

digitalization in several productive sectors, including 

electricity. According to the Organization for Economic 

Cooperation and Development (OECD) analysis about digital 

transformation in Latin America [8], countries in the region are 

taking policy actions to provide affordable access to the Internet 

with reasonable broadband speed, bringing the Internet to 

almost 270 million people in the region with no access by the 

end of 2016. On the other hand, electric mobility can greatly 

contribute to reduce the greenhouse gas emissions associated to 

air pollution in urban areas, the largest environmental risk for 

public health in the Americas [9], by replacing the fossil fuel-

based vehicle fleet for cleaner technologies. Nevertheless, 

massive integration of electric vehicles (EVs) and electric buses 

into the network remain a challenge. 

Climate change is also a common concern in the region, 

especially in countries with hydro-dependent systems in which 

the security risk and vulnerability of energy supply  during 

extreme and longer-lasting dry seasons can be mitigated with 

solar and wind sources. However, technical challenges (e.g.: 

forecasting, inertia provision, frequency, and voltage control) 

associated with the variability and uncertainty of these 

Renewable Energy Resources (RES) must be tackled to achieve 

high level of integration. 

Besides challenges associated with the energy transition in 

Latin America, additional efforts have been made to achieve 

regional energy integration. Central American Electrical 

Interconnection System (SIEPAC) connects six countries since 

2014, mostly at 230 kV, to create a competitive regional market. 

In the Southern Cone, the Andean Electrical Interconnection 

System (SINEA) initiative plans to interconnect Chile, 

Colombia, Ecuador, Peru, and Bolivia, to form a sub-regional 

energy integration that could bring supply security and reduced 

renewable curtailment. More in the south, Brazil is the center 

of energy export/import among Paraguay, Argentina, Uruguay 

and Venezuela, trading energy surpluses through the existing 

interconnections without a regional market framework. 

Migrating towards a regional market can bring economic 

growth, increased flexibility, and benefits from renewable 

energy complementarity [10].  

 
Fig. 1. Electricity generation by source in Central and South America 

[source: IEA (2019)]. 

 
Fig. 2. Challenges in Lantin America Energy Transition. 
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III. MODERN AI 

Artificial Intelligence can be defined as the field of computer 

science dealing with giving machines human-like cognitive, 

reasoning and behavior capabilities. Although this covers a 

wide range of applications in several knowledge fields, the 

present article emphasizes AI’s modern approaches and 

applications in power systems and smart grids, disregarding 

classical AI like Experts Systems, rule-based systems and 

knowledge representation. From the practical perspective 

addressed in this paper, modern AI comprises a vast set of 

algorithms and techniques for solving problems which include 

reasoning, planning, natural language processing (NLP), 

learning, control, and robotics.  

Machine Learning (ML), the study of algorithms with the 

ability of gaining knowledge or skills from experience, 

encompass a broad spectrum of approaches that can be grouped 

in three categories: Unsupervised learning, supervised learning, 

and reinforcement learning (RL). Unsupervised learning 

consists of deducing rules or structures from input data with 

approaches such as clustering, anomaly detection and 

association rule algorithms. In supervised learning, labeled data 

serve as expected output example for the training process. 

Supervised learning can predict numerical variables 

(regression) or categorical variables (classifiers). In contrast, 

reinforcement learning is a reward/punishment model relying 

on the interaction between software agents with the 

environment. A general overview of ML taxonomy is illustrated 

in Fig.3. 

Among the modern AI methods stand out Artificial Neural 

Networks (ANN), an array of nodes (neurons or units) with 

activation functions that capture hidden behavior or patterns 

from input data. Nodes grouped at the same depth level are 

called layer. According to the number of layers, ANN can be 

shallow (a few layers) or deep (multiple hidden layers). When 

deep ANN are used for learning, it receives the name of Deep 

Learning (DL). DL models can be classified into three types of 

models: Discriminative models, generative models, and deep 

reinforcement models. While discriminative models learn the 

boundaries among classes by extracting relevant features from 

labeled input data, generative models can generate new data 

instances from training input data.  

Typical DL generative models use cases are generation of 

scenarios, synthetic time-series, synthetic audio or synthetic 

images/videos, and missing data imputation. In contrast, typical 

DL discriminative models use cases are NLP, artificial vision, 

clustering, anomaly detection, feature extraction, prediction, 

and forecasting. 

On the other hand, the Deep Reinforcement Learning (DRL) 

models combines DL with RL principles to provide algorithms 

capable of improving the performance in conducting a task with 

a trial-and-error approach, applied to robotics, optimal 

controllers of systems and decision-making systems. DRL 

enables decentralized AI architecture with distributed 

intelligence through Multi-Agent Systems (MAS), multiple 

intelligent and autonomous entities (agents) interacting each 

other in a coordinated way to solve common objectives.  

Finally, Nature Inspired Intelligence (NII) take advantage of 

the way biological and natural systems work collectively to find 

solutions or adapt to overcome limitations. Common uses for 

NII are optimization and searching, carrying out exploration 

and exploitation of the search space in an iterative way, 

especially useful with complex or non-convex problems. More 

popular NII stochastic optimization algorithms can be divided 

in three groups: Evolutionary algorithms (EA), Swarm 

Intelligence algorithms and Physics/chemistry-based 

algorithms. EA are exploration-based algorithms that search the 

best solutions with best-agent selection inspired in Darwin 

theory of evolution. Swarm-based algorithms are exploration-

based algorithms that search the solution moving simple agents 

around the solution or parameter space, until a global intelligent 

behavior emerges. Physics/chemistry-based algorithms use a 

single agent iteratively improving by moving through the 

search space.  

IV. AI APPLICATIONS FOR ENERGY TRANSITION 

AI applications are proliferating in the entire energy value 

chain, leveraging the increasing amount of data and the 

deployment of new ICT infrastructure. Energy value chain 

involves manly three activities: Generation, transmission and 

distribution, and electricity demand. The AI impact on each of 

these activities in this context has been studied in [11]–[13], 

highlighting applications related to wind and solar generation 

maximization with less curtailment, demand-side management 

for cost and congestion reduction, sustainable energy 

infrastructure and reliable energy supply. Fig.4. summarizes the 

AI applications for addressing the energy transition challenges 

from a systemic and technical point of view.  

 
Fig. 4. AI applications for energy transition. 

                         
           

                 

                  

                     

                             

                             

                

                                      

                        

                                        

                                      

                      

            

                

               

             

         

               

            

           

               

         

            

         

           

                      

                  

           

            

           

         

                                          

                   

                

 
Fig. 3. Machine Learning taxonomy. 
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A. Forecasting 

Forecasting refers to predict the future from past and present 

data for a given time horizon that can vary from very short-term 

(up to an hour) to long-term (more than 1 year). Forecasts are 

valuable inputs to real-time operation, day-ahead unit 

commitment, operation planning and adequacy assessment 

studies.  

1) Load/demand Forecasting: Electricity load forecasting 
applications encompass prediction of peak demand, active and 
reactive power profile curves, and energy consumption patterns   
for different time horizons. In this context, AI provides an 
alternative to deal with the additional complexity to  obtain 
accurate forecasts in scenarios of massive behind-the-meter 
resources integration. Data-driven and AI-based models can be 
classified as [14]: Time series analysis-based models, 
regression models, ANN models, Support Vector Machines 
(SVM) and Genetic Algorithms (GA). Other applications such 
as prediction of user behavior consumption, activities of daily 
living, current or next location and price forecasting, are 
summarized in [15] for smart home applications. ANN-based 
methods are used for load profile disaggregation [16]. These 
AI-based approaches enable to improve energy efficiency, 
demand-side programs, and system optimization.  

2) Generation Forecasting: Due to the intermittent nature 
of RES, additional variability and uncertainty are impacting the 
operational reliability and flexibility. In addition to the 
technical impacts, saving cost from reducing the renewable 
energy curtailment, start and shutdown of non-renewable 
plants, network congestion and ancillary services requirements 
are also associated with forecasting accuracy [17]. In the case 
of renewable resources, wind speed/power and solar irradiance 
forecasting methods can be mainly divided in physical 
approaches, statistical and data-driven approaches, and hybrid 
approaches [18]. Although the data-driven and AI-driven 
methods are not an atmospheric phenomena model per se, they 
can capture the nonlinear interactions between variables, 
solving this physical model’s limitation, covering a statistically 
significant portion of the solution space [19]. Several ANN-
based models have been proposed in literature for wind and 
solar forecasting [20], [21].   

Among Latin America’s system operators, wind forecasting 

is obtained with physical models in most cases, as summarized 

in Table I [22]–[26], using Model Output Statistics (MOS) post-

processing techniques on data collected from physical models 

such as WRF (Weather Research and Forecasting), GFS 

(Global Forecast System) or NWP (Numeric Weather 

Prediction). However, generation forecasting error analysis 

[27]–[30] has shown notable inaccuracy, leaving researchers an 

opportunity for proposing improvement on existing tools and 

techniques.  

Regarding solar forecasting, it has been identified as one of 

the technical barriers for solar massive deployment in Chile, 

altogether with the harsh environment conditions and the lack 

of access to water, due to the location of solar resources in the 

middle of the Atacama desert [31]. Solar forecasting is a 

relative few explored field in Latin America, so further research 

on AI-driven and data-driven techniques are recommended for 

low-cost solutions development, especially regarding video and 

photo analysis of clouds and other climatic variables (e.g. the 

low-cost solution with DL-based artificial vision proposed in 

[32] for cloudy weather detection).  

B. Smart Grid Applications 

Grid modernization is not relied only on high-voltage 

infrastructure changes, distribution and lower voltage levels 

networks are also facing challenges derived from the 

integration of cleaner energy sources, energy storage systems 

(ESS), electric transportation technologies and Advanced 

Metering Infrastructure (AMI) that enable active participation 

of small-scale energy resources, cogeneration and electricity 

demand in the wholesale, ancillary service and capacity 

markets, bringing additional benefits to market’s participants, 

power system operators, transmission operators and 

distribution operators. Smart Grid (SG) concept encompasses a 

wide variety of subjects, but this section is centered on how AI 

is making distributed Smart Grids smarter. The adoption of 

these technologies could bring energy democratization, 

efficient energy use and energy cost reduction. 

Brazil, Colombia and Chile are the leaders in Smart Gird 

infrastructure planned investments in South America over the 

next decades [33], focusing their efforts on nationwide AMI 

rollout, grid automation, DERs connectivity, IT and utility-

scale storage, seeking at minimizing current high non-technical 

losses, facilitating DERs integration and bringing more services 

to customers. However, improving the efficiency of the grid and 

empowering users is only possible if  intelligent functions and 

data-driven decision making are integrated into the systems.  

AI techniques applied to SG are reviewed in [34]–[37], 

addressing applications in every SG domain. Nonetheless, there 

is one application that serves as mechanism to integrate AI into 

SG: Energy and DER Management Systems (EMS and 

DERMS). SG EMSs are evolving to intelligent and autonomous 

management systems where AI-based technologies enable 

enhanced functionalities in every SG domain as summarized in 

Table II [38]–[48].  

Unlike the definition used for large-scale EMS, this term also 

describes several types of distributed Smart Grid solutions 

aiming at visualization, aggregating, monitoring, control and 

TABLE I 
SOLAR AND WIND FORECASTING METHODS BY COUNTRY 

Country Methods Type of Model 

Argentina Physical MOS with WRF and GFS input data  

Brazil Hybrid 
WEOL: Weighted Average with NWP 

input data   

Chile 
Physical, 

Hybrid, AI  

MOS with NWP input data  

Proprietary’s AI and ML-based Tools 
 

Colombia 
Hybrid, 

Statistical 

MOS with NWP input data, and 

Ordinary Least Square (OLS) 
 

Dominican 

Republic 
Physical 

Proprietary model 

 

Mexico 
Hybrid, 

Statistical 

Proprietary atmospheric models and 

adaptive statistical techniques 
 

Uruguay Physical  MOS with WRF input data 
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forecast of energy supply and demand to unlock potential value 

through energy efficiency, cost saving, improved reliability, 

and demand response programs. With multiple of these 

management systems interacting each other in the Smart Grid 

environment, approaches based on coordinated and hierarchical 

intelligence, such as MAS, will gain relevance. 

EMS functions imply collecting, processing, and analyzing a 

significant amount of data from sensors and utility-scale and/or 

household-scale resources, transmitted through traditional or 

Internet of Things (IoT) infrastructure. If data is on the Internet, 

public or private Cloud Computing platforms are available with 

on-demand AI and data analytics solutions. Another IoT-based 

solution is Edge Computing, on-premises solutions that offload 

cloud server by processing data on the device, entity, or user 

itself when low latency or timely decision-making is required. 

IoT-based architectures with intelligent edge computing [47] or 

with customized ML and AI models [48] have been studied in 

literature. These state-of-the-art solutions will constitute the 

basis for smart cities and other innovation in the electricity 

sector. 

C. Frequency and Voltage Control 

Frequency and voltage control are two of the main functions 

at system operators control centers. Both control processes 

imply scheduling and operating the resources necessary to meet 

the system performance requirements that are constantly 

changing due to the load fluctuations, VER variations and 

unexpected events that affect the grid. The emerging generating 

and transmission technologies in the energy industry are 

introducing uncertainty in both the operation and the models, 

but at the same time, enabling new services and markets. Data-

driven approaches emerges as an alternative to cope with the 

challenges associated with the massification  of these 

technologies. 

1) Frequency Control:  AI-based techniques proposed to 

solve some challenges associated with frequency control can be 

group in three use cases: Reserve requirements [49]–[51], 

frequency control performance monitoring and evaluation [52], 

[53], and AI-based control techniques [54]–[58] for Automatic 

Generation Control (AGC), Load Frequency Control (LFC) or 

Fast Frequency Response (FFR).  

Non-linear dynamic behavior can be captured with data-

based models much simpler than traditional complex system 

models, facilitating the development of practical tools. As 

regards frequency control performance evaluation, alternative 

ML-based solutions have been proposed by the Colombian 

System Operator in [52], [53], using different metrics than 

NERC’s Control Performance Standard (CPS) metrics which it 

is not necessarily assessing the requirements for Latin 

America’s countries, characterized by few interconnection links 

and fast dynamics. 

2) Voltage Control: Main objective in voltage control is to 

maintain the voltage within operational and control limits at the 

grid’s nodes. System-level voltage control is commonly 

performed manually at Latin America’s control centers and, in 

most of the cases, giving priority to switching on/off the 

compensation devices and changing the transformers’ tap 

(discrete control actions), over changing generators setpoints. 

In contrast, voltage control in Europe, Asia, and Australia is 

based on generator’s voltage regulation capability (continuous 

control actions) and thus solutions from these countries are not 

entirely suitable for the Latin American region. 

Modern AI and data-driven approaches offers new 

alternatives to perform autonomous voltage control in power 

system and distribution grids using Multi-agent DRL [54], DRL 

[59]–[61], data-driven online system identification with 

regression techniques [62] and support vector machines [63]. A 

DRL agent for automatic voltage control in [64], shows how the 

ANN can learn the proper control actions by interacting with 

the power system.  

D. Wide Area Monitoring, Protection and Control 

(WAMPAC) 

 WAMPAC systems employ synchronized Phasor 

Measurement Units (PMUs) for disturbance 

detection/prediction and localization, system states monitoring, 

islanding detection, and Dynamic Security Assessment (DSA), 

gaining relevance in low-inertia scenarios with a considerable 

number of DER and RES. 

México, Brazil, Uruguay, Chile, Ecuador, Colombia, and 

Argentina have deployed PMUs for monitoring and protection 

schemes purposes. For example, in the case of the SIEPAC 

network, a wide-area protection scheme detects unstable 

operating conditions and opens the interconnection with El 

Salvador to isolate the Guatemalan power system from the rest 

of Central America before a general blackout occurs [65]. 

However, other functions for guarantying frequency stability 

and control under low-inertia scenarios are required. With the 

existing models, model-based techniques may not be reliable in 

small-signal dynamic analysis and coherency identification due 

to the non-linear behavior of the system in presence of wind 

power [66] and other inverter-based resources. To overcome 

these and other challenges and limitation, model-free 

alternatives or measurement-based methods for the above-

mentioned applications are summarized in Table III [67]–[74].  

TABLE II 
SUMMARY OF AI APPLICATIONS FOR EMS 

EMS Types AI Applications 

 

Electric 

Vehicle 
EMS 

Vehicle to grid (V2G): Fair energy provision or market 

bidding optimization. 
Grid to vehicle (G2V): Charge schedule or congestion 
management. 

 

 
Home, 

Building & 

Factory 
EMS 

Multi-objective optimization with nature inspired 
algorithms for management for energy efficiency, cost 

reduction, improved comfort, and productivity.  

DRL applied to energy optimization allows to develop 
on-line applications by overcoming the heuristic 

optimization processing time limitation. 

Demand Response (DR) with ML, ANN, MAS and RL. 
Designing DR pricing mechanism with NII optimization. 

Customer segmentation and categorization with several 

types of clustering algorithms. 
 

Microgrid,

EMS & 

DERMS 

Optimal dispatch, Voltage/frequency control, 

Real/reactive power control, Device specific functions 

with AI under cloud-based and centralized approaches. 
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AI-based Wide-Area Control System (WACS), focus mainly 

on voltage stability and oscillation damping control, has shown 

better transient and damping response under non-linear and 

non-stationary power system  dynamics  in  the  presence  of  

uncertainties [75] and to low-frequency oscillation damping 

control under solar power uncertainty shows better performance 

than conventional control techniques [73].  

E. Asset Management and Health Monitoring 

The term asset management defines the systematic process 

that aim at maximizing the value of assets during their whole 

life cycle, involving assets operation and upgrade, asset/health 

monitoring and maintenance scheduling. The metering and 

sensing systems installed across the grid generate enough data 

from the fleet of assets to allow seeing the bigger picture of the 

entire system in time horizons near to real time, but also the 

health of each equipment.  

The role of AI in the asset’s lifecycle management is 

reviewed in [76], highlighting the following applications: ML 

and DL to predict asset performance, ANN and other 

supervised learning algorithms to improve predictive 

maintenance, and the potential use of Genetic Algorithms 

(GA)-based simulation-optimization approach to find optimal 

solutions of asset spare provisioning and replacement to 

minimize the cost. 

Machine learning methods for wind turbine condition 

monitoring are reviewed in [77], addressing both diagnosis 

(fault detection) and prognosis (fault prediction) approaches by 

intrusive or non-intrusive monitoring methods.  

F. Robotics 

Both physical and software robots are autonomous systems 

designed with problem-solving capabilities to carry out 

complex tasks . In energy industry, besides the physical robots 

employed in the manufacture sector, unmanned aerial vehicles 

(UAV) with artificial vision and other AI algorithms can 

facilitate the infrastructure inspection in the Latin America’s 

complex geography, without interrupting the operations, 

reducing cost, and increasing efficiency. 

V. AI MATURITY MODEL 

The proposed AI Maturity Model for the Energy Transition 

(AIMMET) consists of measuring the level of usage of AI 

within companies of the electricity sector based on six domains: 

AI readiness, forecasting and prediction, decision support tools, 

planning and operation, smart grid, and asset management. 

These domains result after overviewing the AI applications for 

energy transition (twenty-seven functions were identified as 

seen in Fig.5.), grouped in five broad technical categories. An 

additional domain (AI readiness) is proposed to measure how 

prepared is the organization and the available ICT infrastructure 

to AI adoption. The level of maturity for each domain can fall 

into one of the following categories with their corresponding 

value associated: Non-existent (0), planned (1), implementing 

(2), partially implemented (3), and fully implemented (4).  

The proposed AIMMET is not exclusive for the Latin 

America region use since it was derived from a review of the 

state of the art in AI, but for illustrative purposes, it  was tested 

on actual survey data from four Latin American companies: 

Two ISOs (Independent System Operators), one TSO 

(Transmission System Operator) and one DSO (Distribution 

System Operator). Although this number of system operators 

may not be a representative sample, these were the only answers 

received after requesting information from several system 

operators in the region.  

Fig.5. shows a stacked bar chart with AIMMET results that 

allows to easily compare which domains have higher maturity 

levels than others, or which companies have higher level of AI 

adoption. This example illustrates how AIMMET allow to 

identify the low level of AI adoption at the DSO in almost every 

domain, but at the same time, the ISOs strengths in the AI 

readiness and forecasting & prediction domains. Weaknesses 

and strengths identified with AIMMET could serve as baseline 

of future improvements plans.  

A. Key Enablers for AI Adoption 

AIMMET results serve as input to define an AI for energy 

transition roadmap in which the following key enablers to 

guarantee a successful adoption should be considered according 

to [11], [78]: Data, technology, organization, and regulatory 

framework.  

1) Data: Extracting the full value of this important asset 

implies guarantying its proper handling with the FAIR 

(Findable, Accessible, Interoperable and Reusable) principles, 

TABLE III 
SUMMARY OF AI APPLICATIONS FOR WAMS 

Application Techniques 

State Estimation Kalman filtering algorithms, the 

traditional Least Square approaches, 

ANN and Belief Network algorithms. 
 

WAMS (Coherency 

identification, Event 
Localization and 

Dimensionality Reduction)  

Clustering algorithms, Principal and 

Independent Component Analysis (PCA 
& ICA), Local Outlier Factor (LOF), 

RNN  and CNN. 

 
WACS 

 
RL-based damping control. 

 

DSA 

Decision Tree, Anomaly Detection 

algorithms and density-based clustering 

(DBSCAN). 

  

 

  

 
Fig. 5. AIMMET stacked column chart. 
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counting on high-quality structured data across the business, 

and data exchanging among information systems. Harmonizing 

and implementing standards related to data exchange or data 

sharing in Latin America could facilitate regional integration, 

as well as cross sector operations, e.g., energy and gas or 

electricity and transport. Currently, several countries in the 

region have already open data portals (under the internet 

domains datos.gov.xx, datos.gob.xx or datosabiertos.gob.xx) 

with available information corresponding to energy 

consumption, prices, and generation. 

2) Techonology: The ICT trends that enable AI adoption are 

IoT (for enabling Internet connection), AMI (metering), AI 

frameworks (software), and virtualization of infrastructure 

(such as cloud and edge computing) technologies. Ongoing 

AMI deployment projects in Brazil, Mexico, Colombia, Chile, 

and Peru, are bringing an unprecedent opportunity to introduce 

new services/products, roles, and actors in these countries’ 

energy industry. Cloud and edge computing facilitates the 

scalability of solutions without physical infrastructure 

deployment. Open-source AI frameworks can reduce the costs 

of developing tools, avoiding dependency on cloud providers.  

3) Organization: Digital transformation is putting users and 

customers in the center of business with technology as the 

foundational basis. This disruption is forcing companies to 

adapt the organizational structure, culture, processes, 

technology, and capabilities to emerging trends. Building a data 

management and data governance in the company, reskilling 

and upskilling current professional with AI-related skills and 

developing a data-driven culture are some challenges to tackle. 

4) Regulatory framework: Argentina, Brazil, Chile, 

Colombia, Costa Rica, México, and Perú have adopted the 

OECD’s principles on AI, the first international standards 

agreed by governments for the responsible stewardship of 

trustworthy AI. According to OECD’s AI observatory data, the 

policy initiatives registered in the Latin America territory 

covering the strategy for national digital transformation and AI 

national plans by country are Colombia (30), Argentina (11), 

Chile (10), Brazil (10), Perú (9), Costa Rica (7), México (6) and 

Uruguay (4). In general terms, OECD’s recommendations for 

policy makers include: Investing in AI research and 

development, fostering a digital ecosystem for AI, building 

human capabilities, and preparing for labor market 

transformation and international co-operation. 

VI. CONCLUSION 

Latin America’s energy transition implies wind and solar 

power integration at different scales into hydro-dominant 

systems aiming at reducing climate change vulnerability, 

customer empowerment for cost reduction, and infrastructure 

capacity maximization. AI can accelerate these changes by 

providing smarter capabilities in the entire energy chain value. 

The proposed AI maturity model for energy transition has 

shown to be suitable to identify the current AI status and gaps 

in the adoption of the state-of-the-art AI applications in the 

energy transition.  
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