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Abstract—The environmental health of Latin America and
the Caribbean (LAC) is crucial to the survival of the planet.
LAC countries occupy 13% of the Earth’s landmass yet contain
60% of the terrestrial life. The region is particularly brittle as
climate change looms on the horizon, and its economic reliance
on exploiting natural resources is accelerating its biodiversity
loss. Central to these problems is that LAC is the most
economically unequal region globally. Thus, it faces unique
challenges in promoting sustainable development. This paper
explores whether and how Artificial Intelligence (AI) may
provide methods to accelerate the changes needed to increase
resilience and facilitate adaptation. Starting with a systematic
mapping of the research on AI for sustainability in LAC, we
present a diagnosis of the current situation structured along
the proposed axes of climate change, human vulnerability,
and biodiversity. Then, we give some illustrative examples
of potential directions for further work with applicability to
the region. Due to its often overlooked resources, capabilities,
and particularly fragile geolocation, LAC is called to play
an oversize role in the planet’s sustainability in the coming
decades.

Index Terms—Artificial Intelligence, Deep Learning, Climate
Change, Sustainability, Biodiversity, Human Vulnerability.

I. INTRODUCTION

The Latin American and Caribbean (LAC) region is
characterized by its cultural richness, wide ecological

diversity, and various climates. Its geographical location
covering from the northern border of Mexico to the southern
point of Chile has given rise to 11 major biomes that include
moist, dry, coniferous, and temperate forests, as well as sa-
vannas, pampas, wetlands, montane, Mediterranean climate
regions, deserts, and mangroves [1]. The complexity of these
environments has been the cradle of diverse cultures now
stewarded by the slightly above 660 million inhabitants [2]
of the region. For instance, consider that beyond European
languages such as Spanish, Portuguese, and pockets of
English, French, and Dutch, there is a great variety of
Amerindian languages, e.g., just in Mexico, its government
recognizes the existence of 64 national languages [3]. With
13% of the Earth’s surface, LAC holds 40% of the world’s
biodiversity [4] with around 60% of the terrestrial life on
Earth [5]. Out of the 17 global megadiverse countries, six
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are in LAC. At the same time, LAC is particularly vulnerable
to the effects of climate change, in the form of frequent and
devastating extreme weather events [6]. This situation could
be perceived as unfair to the extent that LAC contributes
relatively little to the problem of greenhouse gas (GHG)
generation but receives significant impacts from the global
rise in temperatures. LAC is, arguably, one of the most
underdeveloped regions. Therefore, it faces a dual challenge
of overcoming human vulnerability challenges and doing so
in a sustainable form [7].

The concept of sustainable Artificial Intelligence (AI) [8],
the blending of AI for sustainability and the sustainability
of AI has made in-roads due to two important factors. For
once, there is a pressing urgency to ensure a sustainable
future for humankind, understanding sustainability as the
ability to meet the present needs without compromising the
needs of future generations [9]. On the other hand, Arti-
ficial Intelligence (AI), the set of automation technologies
capable of perceiving, projecting, and acting independently
of human input, has drawn the attention of researchers and
engineers in light of more powerful computers and advances
in algorithms [10]. Powerful AI primitives have attracted
researchers aiming to use advanced technologies to more
rapidly reach the United Nations (UN) Sustainable Devel-
opment Goals [11], improve public policy [12] and decision-
making [13], enhance agriculture yield [14], redraw business
practices [15], optimize energy production, transmission and
consumption [16], and solve logistic [17] and supply chain
anomalies [18].

Despite abundant studies on the intersection of AI and
sustainability applied globally (see Table I), LAC has re-
ceived less attention from the AI and sustainability research
community. Given the diversity, fragility, extent, richness,
and complexity of LAC, there is a need to explore the use
of AI to support a sustainable future.

This paper contributes by introducing a systematic map-
ping of the extent to which LAC has benefited and what
opportunities remain open for employing AI techniques to
enhance sustainability. Our mapping closely follows the
widely respected format proposed by Petersen et al. [19]
for systematics mappings exploring broad research areas
that have not developed a highly formalized structure yet,
with adaptations to the social and policy goals of climate
impacting research, as suggested in [20]. We join the ranks
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TABLE I
QUERY TERMS FOR THE RELATED LITERATURE SEARCH.

NOTE THE OUTSTANDING CONTRAST BETWEEN THE
NUMBER OF PAPERS WRITTEN GLOBALLY AND THOSE

IDENTIFIED WHEN THE SEARCH IS RESTRICTED TO LAC
IN SCOPUS AND THE WEB OF SCIENCE (WOS).

ID Logic Expression Scopus WoS
Q1 ("Artificial Intelligence" OR

"Machine Learning")
720,522 585,516

Q2 Q1 AND ( "Sustainability" OR
"Sustainable" OR "Environment"
OR "Economy" OR "Society" )

92,242 84,207

Q3 Q1 AND ( "Sustainability"
OR "Sustainable" OR "Climate
Change" OR "Biodiversity"
OR "Vulnerability" OR
"Environment" OR "Economy"
OR "Society" )

98,915 88,140

Q4 Q1 AND ("Latin America" OR
"Caribbean")

249 434

Q5 Q2 AND ("Latin America" OR
"Caribbean")

72 96

Q6 Q3 AND ("Latin America" OR
"Caribbean")

84 108

of Sanchez-Pi et al. [21] constructing a narrative focused
on LAC issues. Differently, we frame our discussion around
the application of AI to prevent, mitigate and adapt to the
consequences of biodiversity loss and climate change on the
people most vulnerable.

As individuals directly impacted by the evolving climate
disaster, we encourage our peers to look at their research
and find out what kinds of climate problems they may be
well-suited to contribute to. We hope that this study will be
read by researchers and engineers who are looking to make
an impact, build new companies to deploy climate solutions
in the real world, advise existing companies on how to
adapt their business practices, and guide local and national
governments to implement policies that will improve our
future.

The rest of the manuscript is organized as follows: Sec-
tion II presents a systematic mapping of the employment of
AI to support sustainability in LAC. Based on the results
unveiled by this review, Section III offers a diagnosis of the
current situation of LAC under three axis: Climate Change,
Human Vulnerability, and Biodiversity Loss. Section IV
gives an overview of the main opportunities for AI appli-
cations in the sustainability context. Finally, we conclude
the manuscript and discuss the future of sustainability and
projections in LAC.

II. SYSTEMATIC MAPPING OF SUSTAINABLE AI IN LAC

Starting with the search terms of economy, society, and
environment, the three pillars of sustainability as defined
by Mensah [22], we sought appropriate research papers,
both geographically unconstrained and limited to LAC (see
Table I), and then a detailed inclusion/exclusion criteria for
research in the AI for Sustainability in LAC is presented
in Table II. We compared the volume of publications on

TABLE II
INCLUSION (IN.)/EXCLUSION (EX.) CRITERIA FOR

RESEARCH IN THE AI FOR SUSTAINABILITY IN LAC
PLANNING PROTOCOL.

ID Criterion Description
In. Ex.

C1 × Studies using AI techniques applied for sus-
tainability in LAC.

C2 × Studies citing LAC countries in the
manuscript text and do not apply AI
techniques in them.

C3 × Studies without the full text available.
C4 × Not peer-reviewed studies, e.g., blogs, news-

paper news.
C5 × Duplicate publications or from multiple

sources.

sustainability topics to those related to AI and ML broadly
defined. It is important to note that Van Wynsberghe [8]
distinguishes between AI for sustainability and the sustain-
ability of AI. While we observe the difference between using
AI for improving sustainability and ensuring that AI does not
add to climate change, we are interested in both the benefits
and the side-effects of AI for sustainability.

There is an outstanding contrast between the number
of documents written for global contexts and those which
apply to LAC in Scopus and the Web of Science (WoS).
Furthermore, following standard guidelines [23], we ex-
panded the terms of our search using appropriate synony-
mous. As a comparison, we retrieved the results from Sco-
pus (https://www.scopus.com/) and Web of Science (https:
//www.webofscience.com) article indexing databases.

Using the query results from both sources, we grouped the
articles on the employment of AI for sustainability [24], [25]
along the lines of biodiversity conservation, climate change
effects, and societal vulnerability (see Figure 1):
Biodiversity Conservation: Research in LAC has focused

on particular in the study of corals [26]–[30], as well
as fishery [31], [32], bears [33], and in general species
distribution [34]. Interestingly, Puschel et al. [35] dis-
covered an extinct type of Platyrrhini primate who lived
in the Caribbean islands, and an ML algorithm was used
to explore whether the specimens were arboreal or not.

Climate Change: For LAC, climate-impacting domain
publications have included research on the effects
of human activity on the marine ecosystems in the
Caribbean [36], glaciers changes in Colombia [37], the
identification of pine seedlings [38], the evaluation of
coastal flooding risk [39], inferring the patterns for
hurricane occurrence [40], risk assessment of shallow
landslides hazard in Central America [41], the inci-
dence of air quality [42], the opportunities for water
research [43], and the clustering of sargassum (a mal-
odorous seaweed that grows in increasingly warming
beach waters) from Earth observations [44].

Human Vulnerability: The largest research effort relating
to the use of AI and ML in LAC is related to the
human condition and its development [45]. This in-

https://www.scopus.com/
https://www.webofscience.com
https://www.webofscience.com
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Fig. 1. Sustainable AI. Sustainability may be understood in terms of three pillars: Human vulnerability, biodiversity, and climate change.
AI may be a powerful tool to alleviate these issues. This illustration provides corresponding examples for each pillar. The documented
application of AI should promote sustainability. A remarkable result of this study is that LAC is underserved relative to other regions
worldwide.

cludes structures used to organize communities [46],
government [47], [48], and political parties [49] to
improve resilience. Health [50], [51] is another topic
focus of AI research in LAC in issues including
malaria [52], Zika [53] and diseases in general [54]–
[56]. There is some emphasize in education [57]–[60]
and schools [61], in particular contemporary formats
such as e-learning [62]. Education research is particu-
larly important to broader human vulnerability because
it can raise income levels [63]. Other research efforts
concern the employment of AI and ML in LAC to
satisfy energy needs [64], particularly with the use of
microgrids [65] to avoid power outages [47]. Additional
work considers food needs, in terms of agriculture [66]
in general, and some aspects of it, including pollina-
tion [67], irrigation [68], and soybeans [69].

While there is a growing interest in LAC to explore the
benefits of AI, and its capacity to improve sustainability,
we observe that there is much to be done in the area. A
discovery of the systematic mapping presented in this paper
is that the number of global publications describing the
employment of AI for sustainability seems to be three orders
of magnitude larger than the those in LAC, pointing out
to vast research opportunities in the region (see Figure 2).
Another relevant point to consider in the data from Table I
is the geographical distribution of studies’ authors, topics,
and fieldwork. Figure 3 (data and code used to generate
the maps at https://tinyurl.com/AI4sustainability) shows the
distribution of authors by country in the works found in
Table I. Recently, most of the papers on the use of AI
for sustainability come from Chinese, Indian and American
authors (see Fig. 3a), while those particularly focused on
LAC are written by American (Scopus) and South American

Fig. 2. The employment of AI for Sustainability is gaining interest
in the research community. However, the number of global publica-
tions dwarfs those generated in LAC by three orders of magnitude,
according to the Scopus search engine.

(Scopus) authors, as described in Fig. 3b.
Figure 3 shows that there are fewer studies when in-

cluding the query with the term LAC (Query Q6) and
lower participation of authors originally belonging to LAC
countries in sustainable AI studies (Query Q3). Despite
low publication rates and LAC author participation, the
International Science Ranking (https://tinyurl.com/country-
ranking, accessed in 06/17/2022) listed LAC countries in
prominent positions in the Top-30 countries that published
studies about the topic "AI for Sustainability" from 1996 to
2021. The important point from our comparison is that even
with limited publications, papers involving AI and aimed at
sustainability draw significant attention when they involve
LAC (Query Q6).

https://tinyurl.com/AI4sustainability
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(a) Authors by Countries from query Q3 in Scopus. (b) Authors by Countries from query Q6 in Scopus.

Fig. 3. Distribution of the authors by country from Scopus results.

Moving forward in our mapping study, we decided to cate-
gorize the studies reviewed into human vulnerability, climate
change, and biodiversity loss. This categorical taxonomy
distances itself from the economy, society, and environment
pillars, shifting attention from anthropocentric factors to
nature-related issues. Starting with the core articles unveiled
by our systematic search, we perform forward and backward
snowball sampling guided by human vulnerability, climate
change, and biodiversity mapping.

III. AI FOR SUSTAINABILITY IN LAC

This section assesses the current situation in LAC regard-
ing climate change, human vulnerability, and biodiversity
loss. While not comprehensive, it reflects our interpretation
of the systematic mapping performed in the previous section.

A. Climate Change

Coping with climate change involves three significant
phases: 1) understanding how the climate functions, 2)
mitigating the effects of massive greenhouse gas (carbon
(CO2) and methane (CH4)) emissions, and 3) adapting
human society to a rapidly heating planet. Improving LAC’s
environmental, social, political, and economic stability and
growth requires grappling with climate change, now and for
the decades to come. In 2021, the Intergovernmental Panel
on Climate Change (IPCC) published evidence indicating
that because global temperatures have averaged more than
1.1◦ C above historical trends during the 2010s, it is un-
likely that efforts to mitigate global warming alone will be
enough to counteract the negative consequences of climate
change. Governments and people of the world must pursue
adaptation strategies as well [70].

Despite its diversity of geography and biomes and its
much lower contributions to anthropogenic climate change,
LAC faces similar adaptation and mitigation challenges as
the rest of the world. LAC is already confronting existential
threats like the disappearance of Bolivia’s Lake Poopó [71]

or the desertification of the northeast of Brazil [72]. This
subsection maps out domain challenges particularly relevant
to LAC and sketches connections between those domains
and AI tools that may support their further sustainable
development.

The subsections below cover topics important to the Mit-
igation of Climate Change, Adaptation to Climate Change,
and summarize recurring themes in AI for climate action.
This section is designed to be an accessible, high-level
introduction to AI approaches for climate applications. For
a more detailed introduction to domain problems and geo-
graphical regions outside LAC, Donti et al. and Rolnick et
al. [73], [74] are extensive surveys that are a good place to
start for AI researchers and engineers at any stage of their
career.

We have selected our sub-domains of interest in the fol-
lowing way: For the Mitigation sections, the section headers
were chosen to be comprehensive with respect to the IPCC
Working Group 3 on mitigation [75], with the modification
of adding carbon capture. For the Adaptation subsections,
we addressed topics covering the areas in IPCC Working
Group 2 [76], added Climate Prediction to highlight work
on climate science (covering the issues in IPCC Working
Group 1 [70] that were most relevant to adaptation), and
then added solar geoengineering to cover a proposed high-
tech solution topic frequently noted in the popular press.
The Finance subsection in the Adaptation section and the
topics highlighted in Sec. IV “Opportunities for AI in
Latin America” were added to reflect policy, social science,
finance, education, and individual action as cross-cutting
necessities for implementing climate change mitigation and
adaptation. We emphasize that this is not a comprehensive
enumeration of all possibly relevant topics but rather a
mapping of structurally important issues identified primarily
by the IPCC.

1) Mitigation: LAC contributes 8.3% of global green-
house gas (GHG) emissions relative to North America
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and Europe (measured in 2014) [77]. Unfortunately, LAC
suffers disproportionately from climate change in the form
of natural disasters and environmental degradation. Due to
weak regional financial infrastructure, LAC is vulnerable
to significant economic and social disruption. LAC energy
production, especially in Uruguay, Brazil, and Columbia, is
greener than in many other places due to hydropower [78].
Reliance on hydropower as a dominant element of the
energy matrix leaves the region vulnerable to changes in
regional water resources [70]. Moving forward, LAC must
continue to mitigate GHG emissions and deploy infrastruc-
ture adapted to climate change.

To decrease emissions, the IPCC and world govern-
ments have explored significant sources of emissions [79],
[80]. Reasonable mitigation solutions have existed for
decades [81], so why should the AI community seek new
solutions? As climate change continues to affect the world
and the practical difficulties of implementing mitigation
solutions are met, communities face evolving problems and
develop targeted needs for local solutions and participation.
This context is where AI and data science become crucial.

a) Energy Systems: The Comisión Económica para
América Latina y el Caribe (CEPAL) finds that approxi-
mately 46% of LAC emissions are from the energy sector.
Coal and oil are already decreasing portions of the energy
matrix in LAC, but methane leaks significantly contribute to
global warming in the short term [82]. What are the obstacles
to converting energy production in LAC to carbon neutral
sources?

Besides installing carbon neutral energy sources such as
solar, wind, hydro, and nuclear, the significant obstacle is
the variability of output from solar and wind sources. Hy-
dropower already represents 63% of Brazil’s electricity ma-
trix [83] and wind accounts for 30% of Uruguay’s electricity
(https://tinyurl.com/uruguay-electricity). The difficulty arises
because wind and solar do not provide energy all day or in
bad weather, and hydropower is not available everywhere be-
cause rivers do not flow in convenient locations determined
by urban planning committees. As a result, the demand
for electricity and the supply are often misaligned, causing
considerable inefficiency and necessitating fossil fuel energy
sources that can be run anytime and anywhere. This problem
is summarized by the icon duck curve graph [84], where the
mismatch of renewable supply and consumer demand for the
day looks something like the profile of a duck.

To overcome the so-called duck curve, AI can be used
to plan when to turn on and off coal and natural gas
plants depending on estimated renewable outputs on a timely
scale [74]. AI-supported solutions for balancing green power
generation can decrease reliance on natural gas (a current
successful solution [85]), and such research has already
begun in LAC [86].

Forecasting energy supply and demand is a central prob-
lem to decarbonizing LAC as energy emissions comprise not
only consumer electricity demand but industrial electricity
use, electricity for agriculture, and, increasingly, transporta-

tion energy in the form of electric vehicles [87]. Well-
understood AI techniques can be used in problems that
require energy forecasting. These problems include time se-
ries modeling of supply and demand, uncertainty estimation
for renewable energy generation, and computer vision for
estimating energy capacity and emissions as they happen
from remote sensing [74]. An even more basic need emerges
in addressing the duck curve problem. Vast repositories of
heterogeneous data need to be wrangled into convenient
datasets for researchers, or new ML approaches need to be
developed for low-data settings (https://www.climatechange.
ai/dataset-wishlist.pdf).

In addition to integrating renewables into complex power
grids, AI has the opportunity to be instrumental in problems
related to the ongoing management and operation of the
energy sector. Recent literature includes prototypes and real-
world case studies of using AI optimization methods and ML
for planning optimal power flow of a power grid [88], [89],
locations for new hydropower plants [90], and managing
existing hydropower infrastructure to prevent disastrous col-
lapses [91]. AI and sophisticated numerical simulations may
even contribute to the future roll-out of emerging renewable
sources such as off-shore wind power [92], [93] and floating
solar [94].

One additional component to an energy system besides
generation and operation is storage. Fossil fuels have been
the mainstay of the energy sector because they provide
energy on demand in any location. Accelerating materials
science to discover new electrocatalysts and battery materials
is another way that ML can be used to achieve net-zero
emissions. For example, the Open Catalyst Project(https:
//tinyurl.com/ocatproj) seeks to enable researchers to solve
hydrogen energy storage via an ML-powered search for
novel molecules that can split hydrogen from oxygen in wa-
ter, thereby creating hydrogen fuel that can directly replace
fossil fuels and be transported and used conveniently [95],
[96].

Overall, renewable energy increases energy security in
LAC [97], if variability can be dealt with. Energy is a sig-
nificant opportunity for LAC and ML researchers interested
in supporting the region.

b) Farms & Forests: Approximately 42% of LAC
emissions are from the land-use (19%) and agriculture (23%)
sectors from recent CEPAL accounting (http://tinyurl.com/
cepal-sustainable). Competent land-use policies and con-
scientious agricultural practices can preserve the massive
carbon sinks (forests and peatlands that absorb emissions)
and limit emissions in LAC. However, to take appropriate
action, policymakers, engineers, and farmers need to know
the sources of emissions and hyper-local environmental at-
tributes of the farmlands or forests they are managing. Often
this information does not exist at the scale or resolution
required to make adequate plans. AI can help by providing
estimations and projections of the necessary information by
analyzing large satellite, aerial, or drone imagery datasets.
Boilerplate computer vision techniques such as object de-

https://tinyurl.com/uruguay-electricity
https://www.climatechange.ai/dataset-wishlist.pdf
https://www.climatechange.ai/dataset-wishlist.pdf
https://tinyurl.com/ocatproj
https://tinyurl.com/ocatproj
http://tinyurl.com/cepal-sustainable
http://tinyurl.com/cepal-sustainable
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tection and semantic segmentation could be game-changers
for many real applications [98].

Problems in this area that call for AI solutions include
the remote sensing of missions [99]–[101], estimation of
changing carbon absorption (carbon stock) [102], forest fire
detection [103], [104], drought projection [105], and many
projects contributing to precision agriculture [106]. AI tools
can help practitioners make trade-offs between economic
efficiency and environmental resilience [107].

c) Transportation & Industry: Transportation and in-
dustrial mining and manufacturing are large sources of
emissions, especially in LAC countries with an otherwise
green energy matrix, like Brazil. Both passenger and freight
transport still mostly rely on fossil fuels worldwide. An
obvious way to decrease emissions from transportation is
to limit transport. AI techniques such as optimization and
reinforcement learning can optimize the supply chain for
sourcing goods. ML techniques and applications propose
clustering techniques for bundling shipments, improving
routing, and predicting demand [74]. Recent research in-
dicates that reductions of 10-11% of CO2 emissions are
possible from selecting more eco-friendly routing of cargo
in urban delivery [108], a typically high emission context.

To decrease emissions from unavoidable industrial trans-
portation and human commuting, AI can improve how
electrical grids respond to the electricity demand of electric
vehicles (EV) [109]. EVs are increasingly common world-
wide (98% sales increase in 2022), but LAC is slightly
behind with only a 77% rise in EV sales. Brazil and Mexico
saw 35,000 and 47,000 EVs purchased in 2021. Total market
penetration is projected to reach approximately 40% by
2030 (https://tinyurl.com/LAC-electric). This is a fantastic
opportunity to decarbonize of one of LAC’s largest emitting
economic sectors. And one major obstacle, managing the
charging grid, can be addressed with AI tools.

d) Buildings & Cities: LAC has a large urban popu-
lation. Improving the energy usage of large buildings is yet
another appealing application of ML to decrease emissions.
Smart equipment control for different building systems,
such as heating, ventilation, and air conditioning (HVAC),
lighting, and simple methods such as identifying insulation
improvements, are all projects that AI techniques can help
solve. A recent study shows that AI-based control of build-
ings can reduce emissions by 13-28% [110]. Sophisticated
model predictive control of an office building in Belgium
shows how advanced AI can make a big difference to a
significant source of emissions [111]. Ultimately, using AI
to improve buildings and cities saves energy and creates a
more comfortable environment for humans to live and work
in.

e) Carbon Capture: If GHG emissions are a problem,
naïve logic would suggest that removing carbon from the
atmosphere is a straightforward solution. Unfortunately for
humanity, natural carbon sequestration happens on a geo-
logical time scale [87]. ML for materials science accelerate
the sequestration process [112], [113]. This area of research
touches both foundational ML research and fundamental

scientific discovery, an exciting prospect for any researcher,
even if the impact on emission mitigation could be decades
in the future.

2) Adaptation: As global temperatures rise, effects such
as changing weather patterns, flooding, increased occurrence
of hurricanes, droughts, wildfire, and degraded environmen-
tal conditions due to loss of biodiversity will be increasingly
felt in LAC. Adaptation and resiliency may become a
more pressing problem for LAC than emissions mitigation,
although solutions to the two are deeply intertwined [114],
[115]. Adaptation to climate change refers to efforts that
change traditional infrastructure and societal organization to
account for the effects listed above. The following section
provides an overview of domain areas that most need adap-
tation.

a) Land-use & Agriculture: Earlier discussion detailed
how AI can be deployed to mitigate farming and land
management emissions. Many of the same technologies can
also be used to manage rapidly changing environmental
conditions and recommend changes in agricultural practices
in a timely fashion [116]. Of principal interest to LAC
is degraded water resources. Ground-based measurements
of bodies of water have seen a decline since the 1980s,
but computer vision and remote sensing may be able to
compensate in this low-data regime [117]. Classic deep
learning techniques have been used for problems such as
river flow estimation [118] and the changing topology of
major rivers such as in the Congo River Basin [119]. In
the decades to come, AI techniques will be an invaluable
resource for monitoring deforestation, identifying eroding
wetlands and fisheries, sounding the alarm about drying
peatlands that emit vast amounts of sequestered carbon, and
at the same time improving crop production.

b) Climate Prediction: The Earth’s climate is a com-
plex physical system. Climate modeling is so difficult that
the 2021 Nobel Prize in Physics was awarded to pioneers in
the field(https://tinyurl.com/nobelcc). Research in AI and cli-
mate simulation is an exciting area for advancing our phys-
ical understanding of complex dynamical systems and new
methods in AI. Climate modeling presents new challenges
for the dominant deep learning paradigms where inputs and
outputs are strictly constrained, there are no constraints to
the form of the learned functions, and learned models are
not required to explain how they operate [120]. The en-
tangled spatial, temporal, and spatio-temporal complexities
of climate data are prompting the development of physics-
informed deep learning [121]. Besides innovation in entirely
new ML techniques, classical statistical analysis is being
extended for extreme precipitation prediction [122]. Prob-
lems that plague individuals and communities like changes
in humidity and temperature relationship [123], increasing
drought [124], high-frequency flood reporting [125], and
precipitation nowcasting [126] are being addressed using ex-
tensions of mainstream ML techniques. A boon for scientific
discovery is found in the ravages of climate disasters.

c) Solar Geoengineering: In their Sixth Assessment
Report: Climate Change 2022, the IPCC decided not to

https://tinyurl.com/LAC-electric
https://tinyurl.com/nobelcc
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include recommendations for adapting to a warming planet
by using solar geoengineering to cool the Earth. This deci-
sion is mainly because the effects of solar geoengineering,
releasing tiny particles into the atmosphere to change how
the Sun’s light is reflected, are very difficult to model. It is
a risky suggestion to attempt such a drastic course of action
without being able to predict the outcome reasonably. ML
may be the strongest contender for assessing this promising
but potentially dangerous alternative [127].

d) Finance: Economic forecasting has a long history of
exploiting ML and statistical techniques. ML offers a possi-
ble approach for simulating the complicated effects of carbon
taxation and environmental policies. Recent research shows
that LAC may suffer significant reductions (9.03–12.7%)
in economic productivity over the 2015–2050 period [128].
More detailed estimations would be critical support for
governments planning climate adaptation. AI can also be
helpful in financial markets, such as deep learning solutions
for energy market predictions [129]. A better estimate of
renewable energy pricing could decrease volatility in that
market and lead to more stable financial opportunities.

3) Recurring themes in AI for climate action: Below are
listed the most important themes the authors of this work
would want to remind students and researchers entering this
field to keep in mind. Please refer to Fig. 4 for a visual
diagram of this information and read [73] for a more in-depth
taxonomy of the ML research trends at the intersection of AI
and climate. In Fig. 4, the connection diagram illustrates the
use of six pillars of AI (left side) in major climate-impacting
domain areas (right side). The line weights connecting AI
topics to climate-impacting topics are proportional to the
number of citations identified by Scopus containing the
linked issues. This diagram provides a convenient view of
what areas of AI research have the most extensive use of the
most critical importance in different climate problem areas.
It may be helpful to new researchers to use Fig. 4 to identify
under-explored connections between AI and climate topics.

Fig. 4. Connection diagram of the six pillars of AI (left side) in
major climate-impacting domain areas (right side).

a) New Datasets: Novel data collection, data mining
and homogenization, and data simulation/generation( https:
//climatechange.ai/dataset-wishlist.pdf). New datasets are es-
sential to almost every climate problem. Adaptation, disaster
response, and urban planning are particularly in need.

b) Computer Vision: Remote sensing data is available
for many problems, including monitoring emissions, infras-
tructure conditions, and deforestation [101].

c) Time Series Analysis: Forecasting future events is
crucial for fully exploiting solar power, managing extreme
weather events, and making the energy and carbon price
markets efficient. Predictive maintenance is another crucial
need for adaptation. As environmental conditions change
drastically due to climate change, infrastructure reliability
will be harder to ensure using a legacy estimate of mainte-
nance needs. Hydropower and resilient infrastructure are two
areas that would benefit LAC from advances in this area.

d) Deep Learning & Uncertainty Quantification: Ap-
proximating time-intensive simulations required for climate
predictions and energy systems modeling is a rich area for
theoretical breakthroughs. Also, accelerated experimentation
for battery material science, electrocatalyst discovery, and
carbon capture chemistry may result in new scientific knowl-
edge.

e) Reinforcement Learning, Control, & Optimization:
Optimizing systems for precision agriculture and the heating
and cooling of buildings requires advances in long-standing
fields like control theory and optimization and emerging
techniques in reinforcement learning.

LAC has a unique opportunity over the next 30-50 years.
Because LAC has less earlier industrialization to overcome, a
digitally literate youth, existing hydropower, and geological
and ecological advantages, sustainability does not have to be
more expensive than in the global North. It may be achieved
more efficiently and with less social and environmental pain
than in other areas.

B. Human Vulnerability
Though human vulnerability is a fluid concept that in-

cludes a myriad of factors [130], some of them addressed
by the research community interested in the employment of
AI for sustainability. Here, we examine human vulnerability
in the light of people’s behavior as social entities interacting
with a fragile and over-exploited environment.

1) Social Aspects: Even though the proportion of people
living with less than $1.25 USD/day fell from 13% to 4%
from 1990 to 2015 [131], LAC remains the most economi-
cally unequal region of the world [132]. In response, condi-
tional and unconditional cash transfer and non-contributory
pension programs have been implemented by governments
covering with social insurance 49.2% of the population in
Honduras and 4.3% in Jamaica [131]. Nonetheless, in its last
survey, in 2019, CEPAL [133] found that extreme poverty
in LAC affected 13.8% of the population while poverty
affected 32.1%. Also, the proportion of women without
income increased while poverty persisted in rural areas,
indigenous people, and children.

https://climatechange.ai/dataset-wishlist.pdf)
https://climatechange.ai/dataset-wishlist.pdf)
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Notwithstanding, Stampini et al. [134] unveils that despite
reducing poverty (for instance, from 46.3% to 29.7% from
2000 to 2013), the LAC population remains largely vulner-
able, revealing that there is a significant difference in urban
and rural settings and detecting that chronic poverty remains
widespread. These characteristics are critical, as Hardoy and
Pandiella [135] observe, because there is a strong correlation
between risk and poverty. Just consider that the people most
at risk of the effects of climate change live and work in
poorly conditioned locations; do not have the knowledge
and capacity to adapt; and once a disaster occurs, cannot
handle the impact.

Of particular interest is the LAC population working
in the informal economy, a percentage ranging from 25%
in Uruguay to above 80% in Guatemala, Honduras, and
Bolivia [136] (about the same as in the pre-pandemic
years [137]). Altamirano [138] finds that as far as the social
benefits do not reach them, they face growing economic
uncertainty. As a result, they establish weaker political
liaisons and may not be well represented in decision-making
processes. Overall, Rojas [139] states that LAC is character-
ized by heterogeneous development, exploitation of natural
resources, and frequent social movements where inequality
and social exclusion are still present.

Regarding health, LAC is the region most devastated by
COVID-19 (28.2% of global deaths from only 8.4% of the
world’s population) [140]. The pandemic has exacerbated
the problems related to human health. For instance, An-
gulo [141] highlights the potential effects of COVID-19 on
mental health in the light of the existence in the region
of pockets of poverty and socioeconomic vulnerability and
inequality, especially among women.

Internet is a powerful tool for conveying information that
can be transformed into education, health, and business
activities. About 67% of the individuals in LAC have internet
usage, being higher in Chile with 82% and lower in Haiti
with 12% [142]. Four out of ten persons in rural areas have
connectivity and 71% in urban areas [143]. Regarding the
quality of the internet service, 46.7% of the LAC population
has connectivity through fixed broadband services while
9.9% has access through optical fiber [144].

In LAC, there is high skepticism about an ongoing global
climate change, with 44% of the population incredulous of
it; out of those who are convinced, 17% do not attribute
it to humans as the primary drivers [145]. Interestingly,
this may not be the case in female-headed households,
and in fact, they seem more resilient to shocks due to
climate variability by the diversification and amount of
income [146]. Comerón [147] supports this finding. She
analyzes the relationship between increased human vul-
nerability and gender psychological and physical violence,
suffered by about 70% of women, and the preeminence of
hazards. Comerón emphasizes the need to include gender as
a factor to prevent, mitigate and remediate natural risks and
their effects. Using this approach may palliate the effects
that recurrent disasters (including wars, economic crises,

rebellions, or those that originated in nature) have on the
reproductive capabilities [148].

2) Environment: LAC is a fragile region that will be most
affected by climate change and whose population is depen-
dent on exploiting natural resources. Consider that Puerto
Rico and Haiti are two of the three most affected territories
or countries by climate-related extreme weather events [6].
Martinez et al. [149] provide a historical compilation of the
effects of rainfall, rising temperatures, and extreme events
associated with the Niño phenomena between 2015 and
2016. At some point, the winds associated with it raised the
sea surface temperature by 4◦C above average. Rodriguez-
Morales [150] observed that this makes it critical to produce
human vulnerability and risk maps to climate anomalies as
extreme events become more frequent and severe. These
events are now so pervasive that they give rise to ecosyn-
demic exposure or the disease interactions resulting from
changes in the environment caused by humans. Ramirez
and Lee [151] note that some infectious diseases, including
Chagas, chikungunya, dengue, malaria, and zika, heighten
during extreme climate events. The situation is problematic
as COVID-19 rages through the continent.

In the wake of more frequent extreme weather events,
there is the need to elevate awareness, investment, and
preparedness. These actions should highlight the relationship
between climatological, hydrological, weather events and
human well-being. Nagy et al. [152] study the occurrence
of climate associate disasters and infer the geographical
and socioeconomic determinants of human vulnerability. But
more importantly, there is the need to bring the studies and
analysis about climate change effects and adaptability to
decision-makers. Based on eight studies assessing climate
change vulnerability, Wood et al. [153] identify credibility,
prominence, and legitimacy as the critical factors in scientific
research needed to affect policy decisions.

These phenomena combined caused a significant effect
on agriculture and stressed food security through droughts
in Colombia, Venezuela, Brazil, the Caribbean, and Mexico.
Some of the people most affected by the environmental risks
and vulnerability factors are the indigenous people [154].
In fact, with between 45 and 50 million people, LAC
concentrates the world’s most significant percentage of the
indigenous population. Inescapably, climate change will af-
fect production and food security. Prager et al. [155] limit the
regions that will improve and those that will face challenges.
They studied bean, maize, rice, soybean, and wheat crops
and the economic viability of agricultural output through
them.

After observing an increase, between Februaries of 2020
and 2021, of 274% of migrants arriving at the US-Mexico
border, Rosenthal [156] claims that climate change is already
forcing the population, in particular the rural indigenous
population of women, to emigrate. Erlick [157] documents
that more than three million Guatemalans have left their
country for the US because they cannot produce enough food
at home.



2320 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 11, NOVEMBER 2022

C. Biodiversity Loss

Life and its diversity are what make planet Earth unique.
It is estimated that 8.7 million (±1.3 SE) species of all
kingdoms inhabit the Earth [158], with about eight billion
living people sharing the same space. Unfortunately, this
coexistence over the centuries has not produced a balanced
coexistence. The first Earth Summit, held in Rio de Janeiro,
Brazil, in mid-1992, highlighted the importance of conserv-
ing, protecting, and restoring the Earth’s ecosystems. The
Earth Summit participants declared, almost unanimously,
that human actions were dismantling the Earth’s major
ecosystems, wiping out genes, species, and biological mate-
rials at an alarming rate.

According to Wojciechowski et al. [159], 7 out of 25
priority hotspots for biodiviersity conservation are in LAC.
Currently, LAC is the most biodiverse area on Earth. How-
ever, despite its biological and ecosystem diversities, habitats
in LAC face constant environmental challenges such as
deforestation, inappropriate land-use practices, biodiversity
loss, groundwater contamination, aquifer depletion, and soil
erosion. AI and other advanced technologies can be instru-
mental in the fight to slow the massive loss of diverse life
in LAC. We summarize several significant directions for
deploying AI and other technological solutions to mitigate
biodiversity loss in the subsections below.

1) Adaptation of Agriculture and Land-use to Preserve
Biodiversity: Alpizaret al. [160] observed that the relative
percentage of protected natural areas in LAC is above the
global average. LAC countries have reserved 24.26% and
23.24% of their terrestrial and marine surface, compared
to 15.79% and 8.09% for the rest of the world. Alpizaret
al. also point out that LAC is a pioneer in creating large-scale
payments for ecosystem services programs (PES), e.g., Costa
Rica’s iconic government-led PES program or Mexico’s
PES program which offers compensation to landowners
for environmental stewardship. These actions are necessary
because while there is an increasing demand for infrastruc-
ture, forests, wetlands, and mangrove ecosystems protect the
infrastructure from natural hazards such as landslides and
floods.

Agriculture is still one of LAC’s most significant income
sources, representing 29%, 10.5% and 1.5% of the total
Gross Domestic Product (GDP) in low, middle, and high-
income countries [161]. However, the expansion of agricul-
ture has been the main driver of the increase in deforestation
and land-use changes, creating a dilemma between agribusi-
ness and rainforest preservation. The planted area covers
about 38% of the territory of LAC [162] producing about
15% of the global exports [163]. Population growth trends
indicate the constant need for food production systems to
satisfy this demand. However, climate change threatens the
ability to meet this demand. In response to these challenges,
adaptations of ecosystem-based practices have proven to
effectively combat reduced biodiversity and adapt to climate
change in support of farmer livelihoods.

In addition to changing how food is grown and har-

vested on land, humans will need to adapt how food is
harvested from the sea to slow the extinction of oceanic
species, decrease coastal erosion, and meet the challenge
of rising sea levels in a warming world. In developing
nations, like those in LAC and elsewhere in the global
South, small-scale fisheries (SSFs) can play an important
role in stabilizing food supply, shoring up vulnerable com-
munities’ economies, and even protecting natural habitats
through contentious sea farming. Challenges for managing
SSFs include the wide variety of species harvested, rapidly
changing weather patterns, complex ecological interactions,
and an enormous land/sea area to monitor. Recent and
ongoing efforts to use AI methods to attack these prob-
lems have been successful in Mexico [164], where the
Baja California Sur fisheries are the third largest in the
world, and in Southeast Asia (https://www.climatechange.ai/
blog/2022-06-16-grants-mangrove), where an international
team is using ML methods to identify an enormous 40,000
hectares of small-scale shrimp fisheries that could be en-
gaged to grow and protect mangrove forests in an effort to
increase global mangrove cover by 20% in the next decade.
Overall, efforts in small-scale fisheries, possibly aided by AI
techniques, could be a crucial tool in fighting climate change
caused poverty and biodiversity loss.

The main motivations to restore damaged ecosystems
include conserving biodiversity, enhancing ecosystem pro-
cesses, combating climate change, and providing ecosystem
services for cultural and spiritual reasons [165]. Among
the possibilities, multi-agent systems techniques may offer
substantial leverage in the planning and decision-making of
biomes’ restoration and monitoring process. As described in
Ralha et al. [166] a multi-agent system model for monitoring
land use, allowing the assessment of areas of urban occu-
pation, pastures, plantations, and native forests of Brazilian
Cerrado using Landsat images permitting government man-
agers to draw up policies to improve land use and restoration.

2) Natural Disaster Monitoring and Management: An-
other contributing factor to the destruction of biodiversity
includes natural, criminal, and controlled forest fires. Mon-
itoring and predicting forest fire risk are beneficial and
essential areas of study. AI is being used to support the
prediction of forest fires [167]. AI tools developed for
monitoring and predicting forest conditions can also be
used to help combat and control fires before and during
these events. Using classifiers based on light-weight Support
Vector Machines (SVM), researchers monitoring forest fire
risk in Lebanon achieved up to 96% accuracy classifying
low- vs. high-risk fire areas in the summer. With the help of
these techniques, it is also possible to mitigate the potential
risks of fire, using robust estimators and satellite images to
assess the amount of accumulation of combustible material
in regions of woods and forests that may be sources of forest
fires [104].

3) Large-scale Biome Monitoring: Preserving tropical
forests and savannah areas reduces the effects of biodiversity
loss at LAC. In this case, in addition to advancing the

https://www.climatechange.ai/blog/2022-06-16-grants-mangrove
https://www.climatechange.ai/blog/2022-06-16-grants-mangrove
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growth of cities, an increase in planting areas reduces illegal
deforestation for logging. These actions directly affect the
maintenance and survival of biomes and preserve the local
biodiversity.

Still, on the issue of flora preservation in LAC, the com-
plexity of the necessary actions grows as the budget made
available for the local governments shrinks. In the case of the
Amazon, the extent to be monitored is on a continental scale,
around 5, 015, 067 km2, in which unoccupied aerial vehicles
(UAV) monitoring activities are practically unfeasible. In
these cases, it is indispensable to use strategies incorporating
AI and remote sensing techniques to monitor changes in
the preserved area. Along these lines, Mehdawi et al. [168]
introduce techniques to monitor changes in the size of the
plant biome of interest, using as a basis multi-spectral remote
sensing images associated with classifiers built from artificial
neural networks, collecting information about changes in the
region of interest.

According to Sierra et al. [169] efforts in LAC focuses
on the process of national representation of their vegetation.
This way, the conservation and recovery process becomes
viable, mainly due to the hundreds of ecosystems involved
and more than 1,000 types of vegetation. Voluntary damages
cause devastation to the plants’ biodiversity and natural
factors such as plant diseases that affect the biomes to be
preserved and pose a risk to the food security of the local
population.

4) Fundamental Biodiversity Research: The biodiversity
loss process involves destroying life at different levels, from
genetic material to the functional traits of an ecosystem.
One way to preserve information about an ecosystem and
perhaps recover lost biodiversity in the future is through the
genetic mapping of species. The GENOMA [170] project
aims to increase the understanding of species’ biology and
use AI to contribute to ecosystem recovery. In one example,
this project mapped new species of freshwater fish [171]
using genetic alignment techniques. In that case, one of
the substrates for performing the alignment of multiple
sequences of materials uses an iterative method approach
called FFT-NS-1 [172]. In this method, the convergence
adjustment process uses weight estimators in the search
process with artificial neural networks [173].

In this section, we have briefly touched on the vast oppor-
tunity to use AI to address complex biodiversity challenges.
We believe that while there is dramatic environmental risk in
LAC, there is also the chance to pioneer a new relationship
between the human and non-human inhabitants of LAC. AI
can be a powerful tool for responsible stewardship in LAC.

IV. OPPORTUNITIES FOR AI IN LATIN AMERICA AND
THE CARIBBEAN

AI may be considered a double-edged sword with the
potential to tackle human vulnerability by increasing pro-
ductivity and living standards or a disruptive phenomenon
that may exacerbate inequality, as described in [174]. In light
of the current situation in LAC, there are some exemplary

practices taking place which have the potential to foster
sustainability. In the section below, we highlight some of
these laudable efforts.

A. Adapting to Climate Change

When designing solutions to adapt to climate change,
there is the opportunity to improve on what existed before
global warming began. We want to highlight two cases
where researchers and entrepreneurs have not only developed
sustainable solutions but also surpassed what has been pos-
sible with high-emission legacy solutions. These timely case
studies were selected because they demonstrate a profound
key to a problem also faced in LAC. These are not broad
examples that cover a significant portion of adaptability
concerns. Instead, these are targeted projects on a scale that
we imagine attractive to the core audience of this paper.

Precision agriculture is a domain where sustainable solu-
tions can surpass legacy practices. Scientists and engineers
affiliated with Microsoft Research India and The Climate
Corporation have deployed a solution that combines internet
of things (IoT) sensors and multi-scale deep learning en-
coders to predict hyper-localized soil and crop attributes for
small farmers. Kumar et al. [175] introduce their DeepMC
system and show how deep learning can be used in the real
world to improve agricultural output for farmers of limited
means. By deploying AI like the DeepMC system, agricul-
tural producers can make themselves both more robust to
changing climate and more economically efficient.

From a philosophical perspective, AI is an enabler of
new work patterns. Classic AI techniques such as Dijkstra’s
algorithm and constraint programming have been used for
decades to tell drivers the fastest way to their destina-
tion. Ride-sharing companies were made possible by 20th-
century AI. Those companies may worsen emissions, but
their techniques are still precious to adaptation innovations.
The Pedal Me mobile app of London (https://pedalme.
co.uk/why-cargo-bikes) determines the optimal routing of
electric cargo bikes for inner-city package delivery, which
is emissions-free and faster than by car. The developers
of Pedal Me used the Google OR optimization engine
(https://developers.google.com/optimization) and the driving
distances from OpenStreetMap (OSMnx https://github.com/
gboeing/osmnx). Pedal Me is a clear win for the environment
and an excellent startup concept.

Many AI tools, from decision trees to Bayesian op-
timization, are being investigated to help cope with the
complex energy network problems that arise from decar-
bonizing transportation [176], [177]. Using AI to reduce
transportation emissions seems like an easy win, but this is
one sector where the Jevons paradox, a famous, non-intuitive
problem, can happen. This paradox occurs when an increase
in technological efficiency leads to a rise in consumption
rate. For example, adding electric cars to a power grid that is
not renewable (Mexico) could result in increased emissions.
Similarly, autonomous vehicles may lead to more driving
time and growing emissions. Researchers, engineers, and

https://pedalme.co.uk/why-cargo-bikes
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entrepreneurs need to examine solutions for unintentional
downsides like this.

While working to mitigate emissions and adapt to climate
change, AI researchers should not worsen emissions. Train-
ing and using large-scale ML models causes emissions on
an electricity grid that is not entirely renewable. Researchers
and engineers should endeavor to limit power use and the
related emissions [178]. To improve accountability, there is
momentum in the AI community to encourage authors to
include a description of how they have limited emissions in
their work [179].

B. Alleviating Human Vulnerability

The world has advanced much in the reduction of poverty.
Just consider that at the 19th-century onset, 94% and 84% of
the population lived in extreme poverty with $2 and $1 or
less per day in inflation-adjusted American dollars [180].
Thus, while sub-Saharan Africa is the poorest region of
the world, LAC is the most unequal [132]. China has been
particularly successful in reducing poverty, going from 88%
to 0.7% of its population from 1981 to 2015 [181]. Today’s
reference to poverty in China refers practically to the rural
poor. The country has passed through several large-scale
poverty alleviation projects starting in 1986 [182], thanks to
its rapid growth, to the implementation of the programs that
provide food and clothing in underdeveloped areas. These
programs relaxed restrictions to provide funding for areas
for non-live people (e.g., empty spaces) in counties with
high poverty indexes.. By 2011, China identified regions
consistently being recognized as poor and developed special
programs. In its most recent national program, China is
introducing e-commerce in the rural population [183]. The
e-commerce program in rural areas permits their economic
development through the employment of AI. It introduces
internet infrastructure and human resources for e-commerce
while identifying the agricultural products supply and mar-
keting information [184]. This situation allows people to
make informed decisions about production and sales ac-
cording to market demand, giving poor people bargaining
power [185]. Some people need training, while others can
use an e-commerce platform to operate their online stores. It
has the additional advantage of providing information from
the world outside via the internet and integrating them into
the digital age.

LAC has been hit hard by COVID-19, but it is also struck
by other preventable diseases that cut off the development
of talent, creativity, and entrepreneurship, leaving traces
of psychological traumas. That is, in general, the case in
most middle and low-income countries as shown by the
Service Readiness Index (SRI), an assessment between 0-
100% about the readiness of facilities to provide health
services developed by Leslie et al. in [186]. There, hospitals
and health centers ranked 77% and 52% respectively in
health facilities for SRI rank. Fleming et al. [187] un-
veil that 47% of the global population has deficient or
no access to diagnosis, affecting mainly the poor, rural,

and marginalized communities. Nonetheless, it is interesting
that international soft-soda producers, while contributing to
the obesity crisis, deplete the water supplies and reinforce
damaging the environment with the production of plastics,
excel at supplying to every corner of the planet. In their
logistics [188], they use local supplies, identifying in real-
time the location of its units, optimizing routing, delivering
products to the sale points directly from the manufacturing
facilities, monitoring performance continuously, and embrac-
ing innovation. Sargent and Darkoh [189] have applied these
characteristics to the treatment of HIV in South Africa,
where at some point 38.5% of the adult population tested
HIV-positive. Through the prediction of demand, the sim-
ulation with digital twins [190], the attention to the needs
of individual patients with the support of machine learning
algorithms trained with hundreds of thousands of patients,
they connected 1200 hospitals to the platform, incorporating
2.4 million cases, about 10% of the world’s HIV cases.

C. Tackling Biodiversity Loss

Several strategies are used in tackling the reduction of
biodiversity in LAC, including the automatic recognition
of the plant species [191]. Andre et al. [192] and Al-
Hiary et al. [193] use deep learning techniques to identify
plant species from images, including their most common
pathologies. Still, other AI techniques can be valuable and
practical in preserving plant biodiversity. One approach to
monitoring large areas of dense vegetation is UAV. These
devices are integrated with geospatial sensors, including
cameras sensible to a broad spectrum of electromagnetic
frequencies, which are combined with AI to identify possible
degradations in the inspected biome [194].

An important indicator of local biodiversity preservation
is the ecosystem’s ability to collect and store atmospheric
carbon. Large vegetation areas accomplish this task. There
is growing concern about the inability of countries to guar-
antee the maintenance of conservation areas so that the
carbon cycle is possible, especially those with large tropical
ecosystems such as the Amazon forest in their territory.
The Amazon forest has an extensive forest area in nine
South American countries, mainly Brazil (69%). The lack of
political coordination between countries is a significant risk
factor for the entire carbon cycle. To mitigate and minimize
damage to the carbon cycle, the initiative by Freitas et
al. [102] developed an approach for estimating the carbon
stock of the Amazon forest. The analysis of laser radar
images (LIDAR), combined with an AI strategy, achieved
97% accuracy in estimating indirect carbon stock.

The reduction of plant preservation areas directly in-
fluences the decrease of the fauna. The same happens in
the degradation of marine preservation areas such as coral
reefs and other places inhabited by local fauna, which are
subject to the degradation of their environment. The range
of opportunities is enormous, with a potential application
focusing on land and sea areas, all of them with abundant
biodiversity. For these activities, Mehrnejad et al. [195]
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describes an initiative for the preservation of the marine
ecosystem, whether in shallow or deep waters, based on
the use of artificial neural network techniques for the de-
tection of stationary animals (large conglomerates of crabs).
Similarly, the detection process for large numbers of ter-
restrial animals can be carried out to allow the monitoring
and management of the fauna, directing efforts to improve
preserving local biodiversity with AI. For instance, Zhu et
al. [196] developed a method in which a graph regularized
flow attention network (GFAN) to monitor animal counts for
agriculture and wildlife preservation.

Another way of preserving biodiversity, or minimizing
the process of reducing the biodiversity of a biome or
ecosystem, is by monitoring evolving diseases that may
occur in the species. Malik et al. [197] uses image processing
techniques combined with artificial neural networks and K-
Nearest-Neighbors for the detection of Epizootic Ulcerative
Syndrome (EPU), which affects fish populations in their
natural habitat.

For Wang et al. [198], the deteriorating water quality
leads to the biodiversity crisis, affecting all ecosystems. The
proposal presented for water monitoring was based on an
approach using AI and the Internet of Things (IoT), making
it possible to monitor of water quality in these biomes.
Their technique is based on a multivariate polynomial re-
gression model of degree eight, the coefficients of determi-
nation results are 0.89, 0.78, 0.87, and 0.81 for chemical
parameters nitrate nitrogen(NO3-N), biochemical oxygen
demand(BOD5), phosphorus(PO4), and ammonia(NH3-N),
respectively, the results are evaluated for the urban river Lam
Tsuen in Hong Kong.

According to Lawler et al. [199] the COVID-19 pandemic
has links to biodiversity loss and ecosystem health. The
main effects of COVID-19 on biodiversity loss are diverse
and interconnected on conservation funding, tourism, envi-
ronmental policy, indigenous land managers, and human-
wildlife contact. Effects of the reduction in conservation
funding, lockdown of people and activities, and rural and
low-income populations, are the main factors that directly
affect biodiversity and ecosystem health.

D. Improvements in Data Availability and Transparency

AI can improve decision-making processes in climate
changes, human vulnerability, and biodiversity loss appli-
cations. Regardless of which technique, method, or model
is used, these are based on AI, whether supervised or not,
in a stochastic or deterministic approach, using deep or
superficial learning methods, the need for data availability is
fundamental for high-quality and robust results. As obvious
as this statement may be, the data available must be reliable,
transparent, and as detailed as possible.

An example demonstrating the importance of data avail-
ability, transparency, and reliability was how several demo-
cratic and authoritarian governments addressed the issue of
combating the COVID-19 pandemic. Anaka [200] describes
that democratic governments are disadvantaged with the

current pandemic mainly because they cannot intervene in
their citizens’ lives as aggressively as their authoritarian
counterparts. Also, suggest that possible data manipulation
may account for the apparent advantage of authoritarian
countries. And unfortunately, this situation prevented the use
of techniques and methods based on AI from being used to
improve the results of combating the pandemic, being able
to minimize the spread of the virus, reduce the number of
hospital admissions for severe cases, and also including in
reduction of deaths.

For Lnenicka et al. [201] transparency in the public sector
data is one of the most important topics of the current
debates on accountable, participatory, and good respon-
sive governance. However, in several governments in LAC,
democratic or not, regardless of their support and direction
of policies for sustainability and preservation of biodiversity,
they have restrictions to data access. The barrier is mainly in
the absence of open data portals, where data are standardized
and made available for the study and analysis of various
sectors of action of these governments. In addition to the
difficulty of access, several countries maintain databases
with incomplete, inaccurate, and improperly organized data.

Even in countries that have open data portals, the difficulty
in obtaining information is considerable. Therefore, it is
complicated to develop models, methods, and applications
using AI. The high cost of acquiring, organizing, and
managing these data makes it difficult to develop strategies
addressing sustainability issues and derivatives activities. It
is a fact that when openly shared, data have their value
and may allow the improvement in every sector of society,
including those involved in initiatives aimed at sustainability.

Regarding the access and availability of public data, in-
cluding the relevant data for analyzes involving sustainability
and the environment, in 2011, only 12 LAC countries had
a government transparency law and access to information
legislation [202]. With time and pressure from local and
global society, the situation improved. By 2021, LAC had 31
countries with policies and legislation for accessing public
government data [203]. Compared to other countries, the
LAC country with the best score in the ranking is Uruguay,
and occupies the 18th position out of 180 countries analyzed,
as presented in [203].

CONCLUSION

With a late arrival on the global scene, America was
subject to conquest and subordination. By imposing a polit-
ical system based on exploiting natural resources and its
later abdication to economic powers, manufacturing and
technological advances lagged, leaving a trace of economic
inequality, social unrest, and a brittle financial situation.
Compounding this situation, LAC is in a particularly fragile
geographical condition as climate change gives rise to more
frequent and devastating extreme weather events. LAC’s
reliance on natural resources is also threatening its rich eco-
logical in-heritage while impeding it from sharing the wealth
generated by the employment of advanced technology.
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The recent revolution in AI offers valuable experiences
that could help LAC leapfrog its current socio-political
and economic environment in a sustainable form. These
opportunities for the employment of sustainable AI include
evidence-based policymaking, the construction of appropri-
ate infrastructure to empower its citizens, the creation of
a governance model based on transparency, openness, and
consequences, and the increase, protection, and monitoring
of its natural resources. Through these action lines, the LAC
leadership may lay the basis for a more resilient future.

In the future, we will explore some of the opportunities
revealed by our systematic mapping. For example, we will
investigate the use of satellite sensors to assess human vul-
nerability at a fine-grained level with broad spatial coverage;
we will characterize forestry for conservation in protected
natural areas; we will estimate the risk of flooding to reduce
the effects of extreme weather events; and we will monitor
wildlife in the open ocean to understand migratory patterns.

This research has revealed that LAC is very neglected,
and there is a need to build decision-making support systems
that allow reliable, comprehensive, and flexible monitoring
if we want to respond to the challenges of sustainable
development. These characteristics are contained in the solu-
tions that artificial intelligence can provide in the significant
challenges ahead.
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