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Team Modeling with Deep Behavioral Cloning for
the RoboCup 2D Soccer Simulation League

Felipe V. Coimbra and Marcos R. O. A. Máximo

Abstract—Soccer is still considered an open problem by the
AI community due to its complex stochastic real-time multiagent
nature. The RoboCup Soccer Simulation 2D League has been
used as a testbed for new ideas and techniques for many subjects,
including team modeling. However, even though team modeling
has been an indispensable part of the best league participants to
date, in practice it typically consists of ad-hoc heuristics encoded
as rules. This requires time-consuming manual work, does not
scale to multiple teams, and does not work well at unaccounted
scenarios. This paper presents a data-driven method for modeling
teams by training Deep Neural Networks with large amounts of
data with an Imitation Learning formulation. We demonstrate the
approach by training a deep model of the Japanese team Helios
using 57,578,668 state-action pairs of players. The resulting
model achieved 84.5% accuracy on action selection and a small
error on regression of the action parameters. The network is
shown to be an effective movement predictor of Helios field
players and have negligible degradation when Helios is evaluated
against adversaries not seen at training time.

Index Terms—Team Modeling, Deep Learning, Imitation
Learning, RoboCup, Robot Soccer

I. INTRODUCTION

Robot Soccer is a complex multiagent game where agents
must work cooperatively against adversaries to win. It

remains an unsolved problem both in the real world and
simulated environments. Soccer players typically face noisy
and incomplete localized information about the world and
must act in real-time under stochastic settings and limited
communication bandwidth. For this reason, it has served as an
important testbed for new developments in Robotics, Control
Systems, and countless subfields in AI.

The Robot Soccer World Cup (RoboCup) is a scientific
community and robotics competition founded in 1996 that
aims to advance, promote and popularize robotics and AI
research. Its mission is that “By the middle of 21st century, a
team of fully autonomous humanoid robot soccer players shall
win a soccer game, complying with the official rules of FIFA,
against the winner of the most recent World Cup.” [1].

The RoboCup Soccer Simulation 2D (RCSS2D) League was
RoboCup’s first research environment (Fig. 1) and the one we
will explore in this work. In RCSS2D, autonomous agents
are virtual players that act, observe, and communicate in a
2D world by means of a central simulator server. Sensorial
information is local and unique to each player, besides being
discretized, incomplete, and stochastically served. However,
there is also a special information mode available, called
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Fullstate, in which teams receive perfect and complete in-
formation about all players and the ball. The simulator also
allows accelerating matches by means of a Synchronous mode.

Fig. 1. Typical visualization of a RCSS2D match.

Players can take several actions, transmitted via server
commands. Some minor commands can be issued multiple
times per turn, but we will consider action commands that are
sent once per unit time. For the purposes of this work, we are
concerned with four types, from which the player must pick
one:

1) dash: linearly accelerates the issuing player with a given
dash power in a given dash direction.

2) turn: rotates the issuing player’s body by a given
turn moment angle. The rotation movement has zero-
order dynamics (no rotational velocity), so the command
changes the body’s direction immediately.

3) kick: allows a player to kick the ball with given kick
power and kick direction.

4) tackle: allows a player to clear the ball away in a given
tackle direction. The tackling power is not controllable.
Mainly used for stealing the ball from opponents as it
can be used farther from the ball.

Because these high-level server commands abstract low-
level actuators, work on RCSS2D has traditionally happened in
a higher-level space. Some commonly pursued research topics
include building models of individual and collective behavior,
team strategies, planning algorithms, etc [2]. In particular,
agent models have been extensively used offline and online
in the RCSS2D research space and have been an essential
component of competitive teams [3].

The typical procedure for obtaining agent models involves
manually writing code to recognize patterns and hardwire
policies. Although simple and effective at narrow contexts,
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it is not trivial to encode individual and collective behavior
in this manner. As the league evolves, it becomes harder to
capture more complex interactions with codified rules. At the
same time, existent hand-written logic is typically too brittle
to adapt to newly seen behavior and rewrites take time.

A widely investigated alternative has been around the use of
data-driven paradigms. Here, agent models leverage data di-
rectly, extracting and storing identified patterns algorithmically
to later use them for inference. This has grown in popularity
in the RCSS2D League with advances in Machine Learning
(ML) techniques, such as Neural Networks [4]. The data-
driven approach is very suitable to simulated environments
where it’s typically easier to collect data. A well regularized
ML team model displays adaptation when the team is subject
to unaccounted situations. Also, a single training pipeline can
be reused to obtain a model of any team.

Some studies have also applied Decision Trees [5]–[7] and
Case-Based Reasoning [8]–[11] for a range of problems such
as coach modeling and player policy reconstruction. More
modern approaches have been inspired by the Deep Learning
(DL) framework, applying it for use cases such as improving
tree search heuristics used for online planning [12], [13].

The Machine Learning field of Imitation Learning (IL), has
been extensively employed for building models in Robotic
Soccer [14]–[17]. In IL, the target objective is learning be-
havior from an expert’s demonstrations. Within this space,
the Behavioral Cloning (BC) technique consists of learning
a direct mapping of states to expert actions. It formulates the
problem as a straight application of Supervised Learning with
the expert’s examples being the supervised dataset [18].

The combination of the IL formulation with the DL frame-
work has led to substantially good results. Deep LSTMs have
been used for imitating an agent in a simplified offensive
scenario [19], [20] and Deep Feedforward Networks have been
used to learn defensive positioning and further improve it with
Reinforcement Learning (RL) [21].

The investigations of this work embody the use of BC to
teach a Deep Neural Network to imitate the field players of
a RCSS2D team. The Neural Network (NN) receives the raw
world state as input and outputs both the actions the players
should take and the parameters of those actions. We focus on
modeling field players, as we believe goalkeepers have very
specific behavior (e.g. special actions) and deserve separate
treatment.

The novel contributions of this work are:
• The proposal of a reproducible pipeline for generating

datasets and building deep imitation models of RCSS2D
teams

• An appropriate NN architecture for this task, with sug-
gested parameters and baseline results

• A quantitative evaluation of the approach’s generalization
capabilities

Our methodology differs from previous work by:
• Learning the agent model using fully featured RCSS2D

matches, instead of limited scenarios [19], [20], [22].
• Choosing to represent the model with a network of

multiple layers trained with tens of millions of data points

– a scale not reported in the literature yet to the best of
our knowledge.

• Proposing a NN architecture designed with the nature of
the task as well as RCSS2D environment constraints in
mind [23].

We organize our work as follows: Section II explains our
dataset generation pipeline, the BC state and action spaces,
the NN architecture, and the training procedure; Section III
characterizes the generated dataset and shows the results of
the proposed NN; Section IV concludes our work with a brief
recapitulation and possible directions. Readers can find more
details on the grounding of our proposal in [23].

II. METHODOLOGY

We use a dataset of observed states and the corresponding
actions taken, as typical of BC. Once built, the dataset can
be used for training a NN via typical supervised learning
procedures. This section explains the dataset generation, our
proposed NN architecture, and the training setup. All code is
openly available, including a game log parser [24], a command
log parser [25], and the pipeline and training logic [26].

A. Dataset and Data Pipeline

Our main dataset was built from 1400 matches of the
Helios2019 team released at RoboCup 2019 [27] against 8
different opponent teams from the RoboCup 2019 and Latin
American Robotics Competition (LARC) 2020 competitions.
Each Helios’ opponent played 200 matches with 6000 game
cycles each, generating about 9.2M raw frames (simulator
states) and 83.3M commands from Helios players.

The version 16.0.0 of the RCSS2D simulator was used with
Synchronous mode turned on and Fullstate information given
to both sides of the field. At every match, Helios2019 played
on the right side of the field without loss of generality.

Game and command logs were processed by an automated
pipeline as shown in Fig. 2. Feature extraction removed data
not useful for this work, such as information about other
commands and sensors. Domain normalization projected each
extracted field into a [−1, 1] interval. The SQL ingestion
condensed all matches into a common schema (described in
[23]), making it easier to clean, shuffle, and bind game states
to actions. Data cleaning of the SQL database removed all
game states that did not represent normal gameplay (such as
corner-kick and offside) and all commands issued by non-
Helios players or goalkeepers.

In the end of the pipeline, the prepared data was split into a
training dataset with 57,578,668 data points plus a dataset for
validation and testing with 3,030,372 state-action pairs. Each
data point consisted of 119 input features and 7 outputs, as
summarized in Tables I and II.

The input features define the BC state space, an aggregation
of static and dynamic information on the ball and all players.
Because all players are represented by the same NN, the
redundant information on the command issuer is necessary to
specify to the network which player it should be predicting.
We assume the Markov Property for team modeling, which in
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Fig. 2. Pipeline stages in the preparation of a dataset.

TABLE I
INPUT FEATURES USED AT TRAINING.

Object Feature Quantity Description

ball x 1 Ball’s x-coordinate

ball y 1 Ball’s y-coordinate

ball vx 1 Ball’s velocity x-coordinate

ball vy 1 Ball’s velocity y-coordinate

player x 22 X-coordinate of every player

player y 22 Y-coordinate of every player

player body 22 Body orientation of every player

player vx 22 Velocity’s X-coordinate of every player

player vy 22 Velocity’s Y-coordinate of every player

player x 1 X-coordinate of command issuer

player y 1 Y-coordinate of command issuer

player body 1 Body orientation of command issuer

player vx 1 Velocity’s X-coordinate of command
issuer

player vy 1 Velocity’s Y-coordinate of command
issuer

BC terms means that it is enough to only include information
from the latest cycle in our state formulation [23].

The outputs, on the other hand, define the BC action
space. Although the action space has dimensions for all action
parameters, the actual meaningful dimensions are determined
by the value of comm_type. The remaining dimensions indicate
other less likely predictions.

One last dataset was created via the same pipeline to be used
for evaluating the final trained network on out-of-distribution
data. It contained 60 matches of Helios2019 against 6 unseen
teams that also participated in RoboCup2019. Each adversary
contributed equally to the dataset with 10 matches. The 60
matches generated 2,486,573 state-action data points after
being processed by our pipeline.

TABLE II
OUTPUT COLUMNS USED AT TRAINING.

Output Domain Description

comm_type {dash, turn, kick, tackle} Command issued

dash_power [−1, 1] Dash power

dash_dir [−1, 1] Dash direction

turn_mom [−1, 1] Turn moment

kick_power [−1, 1] Kick power

kick_dir [−1, 1] Kick direction

tackle_dir [−1, 1] Tackle direction

B. Neural Network

The NN was designed to decide what action a single agent
should take and the values for the action’s parameters. By
using a single NN to imitate any Helios field player, we assume
that a single network can represent any field player. In other
terms, we assume players’ actions are independent from their
roles given the current world state.

This approach allows the network to leverage 10 times
more data than it would if every player was imitated by a
different NN. Another way of seeing this design decision is
by considering it as training 10 neural networks but keeping
a strict weight-sharing constraint between all of them. By
predicting one player at a time, the network can model the
complete team after 10 predictions or a subset of it with fewer
forward passes.

We further extend this architecture to force weight-sharing
between layers that predict which action to take and what
action parameters to use. The final result is illustrated by Fig.
3 as a NN with 2 output layers (two-head NN). There is some
experimental indication that this architecture improves action
selection accuracy [23].

A softmax layer is used for the classification head, which is



COIMBRA et al.: TEAM MODELING WITH DEEP BEHAVIORAL CLONING FOR THE ROBOCUP 2D SOCCER SIMULATION LEAGUE 291

Fig. 3. Single-layer illustration of the Neural Network used in this work.

TABLE III
HYPERPARAMETERS USED DURING TRAINING.

Hyperparameter Value

Number of Epochs 400

Batches per Epoch 300

Batches per Validation 200

Batch Size 4096

Optimizer Adam

LearningRate 0.001

β1 0.9

β2 0.999

Hidden Activation relu

Architecture [127, 512, 256, 128, (4, 6)]

Input Normalization Layer Yes

Classification Output Encoding 1-hot

Regression Output Encoding tanh-bounded

Classification Loss Function Categorical Cross-entropy

Regression Loss Function Mean Squared Error

adequate given that players can only choose one of the actions
considered in this work at each decision cycle. Because action
parameters have bounded domains, we use tanh activation
functions at the regression output layer to automatically limit
values to the [−1, 1] domain.

Although forward propagation generates parameter predic-
tions for all actions, the truly relevant regression outputs are
the ones linked to the command type with highest softmax
output – the truly predicted command. The remaining re-
gressed values suggested parameters for the remaining com-
mand options. The softmax values for those options express
the probability of them being followed as other alternatives.

Classification output data is 1-hot encoded into 4-
dimensional arrays. Regression values for parameters used in
actions not issued at a state-action data point are set to zero.
Table III shows the values of the hyperparameters selected for
the network and the training procedure.

Since the dataset was quite large, considering an epoch
to be a full pass would take very long and result in few
validation checkpoints, hindering model selection. Therefore,
we randomly shuffled and sliced the complete training dataset

and limited each epoch to a full pass over a single slice.
At the start of a new epoch, a new slice gets picked in a
cyclic round-robin fashion. The slice is shuffled and then used
to generate batches of data points for gradient updates until
the slice was depleted. At the end of each epoch, we ran
a validation pass on the network with a smaller number of
batches, as validation should only use enough data to attain
low errors and fluctuations.

The number of hidden layers and hidden units at each layer
were defined after an iteration-bounded beam search on powers
of 2 that optimized classification accuracy. More details can
be found at [23]. The training error was defined as the sum
of the heads’ errors without any weighting.

III. RESULTS

In this section, we discuss characteristics of our training
dataset: the final output of our data generation pipeline.
We also exhibit our trained model’s performance results and
describe how it could be used to support decision-making.
The trained model and the code used to evaluate the model
are openly available [26].

A. Data Characterization

The generated dataset captured a good picture of Helios,
showing good state space coverage. This can be seen in Fig.
4 for position coordinates through a sample of 1,000,000
commands issued by different Helios’ players across the field.
Nonetheless, there is a clear class imbalance between the
different action types, as shown by Fig. 5, with a clear majority
of dash and turn actions. This is expected because, at every
cycle, at most one player tends to be close enough to the ball
to either kick or tackle it. Also, both commands are mostly
executed to push the ball away from the holder (dribbling,
passing, or shooting).

Furthermore, raw match data has also presented semantic
defects. Fig. 6 shows the distribution of turn_mom parameters
used in turn commands. There is a sky-high number of turn
commands issued with a zero value, which is essentially
equivalent to doing nothing.

B. Model Results

Training and evaluation were conducted on a single local
machine with a 2.6 GHz 6-Core Intel Core i7 9750H and
16 GB 2667 MHz DDR4 RAM. We used the Tensorflow 2
library to train and evaluate models. No GPU acceleration
was used, but Tensorflow made use of AVX2 instructions
available. Training sessions for hyperparameter tuning were 2
hours long, but the final reported model was allowed to train
for 24h.

The final model obtained 84.5% accuracy on action se-
lection and a mean absolute error of 0.069 on parameter
regression. For visualization, this absolute regression error
would be equivalent to about 7 units of dash or kick power and
a deviation of 12◦ in dash or kick directions. This estimation is
worst-case, assuming all regression error concentrates on the
selected action, indicating that the real error should be lower.
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Fig. 4. Different actions issued across the field, colored by type.
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Fig. 5. Distribution of issued commands by type.
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Fig. 6. Histogram of turn moments used by Helios field players.

As shown by Fig. 7, the model displayed no signs of
overfitting during training. On the contrary, it seems longer
training could unlock further improvements, which was not
possible due to resource usage limitations. This could be
achieved with more computational power, which was not
available during our experiments. Each NN head achieved
different error regimes by the end of the procedure: there are
signs of convergence for the regression target, whereas the
network might be underfitting for the classification output.

Table IV breaks the classification results down to each
action. The scaled accuracy is calculated by dividing the
accuracy by the fraction of the same action in the dataset.
The scaled accuracy can be used to measure the room for
improvement at each action – the closer to 100%, the less room
exists for improving accuracy by improving that particular
action.

TABLE IV
CLASSIFICATION METRICS FOR EACH COMMAND TYPE. THE MOST

IMPORTANT RESULTS ARE HIGHLIGHTED IN BOLD.

Metric Dash Turn Kick Tackle

Accuracy 62.63% 20.91% 1.00% 0.0084%

Scaled Accuracy 92.44% 67.71% 76.34% 21%

Precision 85.60% 80.82% 77.64% 53.36%

Recall 92.26% 66.59% 6.21% 0.054%

Specificity 68.25% 92.77% 99.66% 99.99%

Table IV shows that the accuracy is greatly dominated by
dash and turn commands. The low scaled accuracy of turn
commands might be a result of the dataset defects previously
discussed, which presents a clear path for improvement. The
low recall for kick and tackle actions makes the model better
suited for movement prediction only, instead of a full agent
imitation. This is a consequence of training the network with
a highly imbalanced dataset.

This imbalance is a natural characteristic of the underlying
distribution of commands, and is not related to our Deep
Behavioral Cloning formulation in specific. Any data-driven
approach for modeling will need to deal with the difficulties
that originate from the distribution’s skewness. These diffi-
culties can be counteracted with techniques such as class
oversampling, class undersampling, data augmentation, and
cost function biasing, but also by architecture adjustments,
such as employing an ensemble [28].

When evaluated against unseen teams, the model showed
almost no degradation in both classification and regression
outputs. Fig. 8 shows a comparison between the evaluation
against teams in the test dataset and outside the training
distribution. This result indicates that the final model learned
to imitate Helios well enough to generalize at new scenarios
against new styles of play.

Figure 9 shows 20,000 samples of the network’s response
time for a single prediction for random input. The NN takes
on average 1.4 ms to output the action and its parameters with
a standard deviation of 0.2 ms.

Official RCSS2D matches are played with 100 ms cycles
and are ran on commodity hardware. Considering that half
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Fig. 7. The evolution of classification and regression metrics during training.
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Fig. 9. Histogram of 20,000 measurements of the Neural Network’s predic-
tion runtimes.

the time is spent on decision-making, it would be possible to
input the network with at least 35 states at every cycle. This
is fast enough to represent the actions of an opponent team
completely at every frame during online play.

The model could also be used to support online planning
in more specific scenarios that do not require predicting all
players, such as zone-marking or pressuring the ball holder.
In these situations, the model need only predict the movement
of free opponent players and of the opponent ball holder, a
scenario where it has demonstrated good results.

IV. CONCLUSIONS

Encoding team models with hardcoded rules in complex
multiagent scenarios such as robotic soccer is error-prone,
requires greats amounts of work, and usually fails to generalize
when the team plays against different opponents. In this
work, we proposed replacing this approach with a data-driven
paradigm. We demonstrated the construction of an end-to-
end data preparation pipeline and the use of the generated
datasets to build a Deep Neural Network that imitates the
behavior of any field player, namely its action selection and
action parameter regression. The trained network can be used
to model any subset of team agents.

Our results show that the model can imitate action selection
with an accuracy of 84.5%, although excelling mostly on
movement prediction. Combined with an average runtime of
1.5 ms per prediction, it is possible to use the obtained



294 IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 2, FEBRUARY 2023

model for online inference. We also point clear improvement
directions by using dataset class-balancing techniques, more
rigorous action data cleaning, and longer training. The model
showed strong generalization capabilities by having negligible
performance degradation when facing teams not used during
training.

Future directions of our work include using models obtained
with the presented pipeline for online opponent modeling,
imitating multi-step behavior, and improving training in the
presence of imbalanced datasets.
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