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Abstract—The aviation community develops Trajectory Based
Operations (TBO) as an advancement in Air Traffic Management
(ATM). There is still the need for an efficient scheme to present
the trajectories, manage their associated data, and further detect
and resolve the conflicts (CD&R) that should eventually occur.
In this research, we develop a CD&R framework for managing
predicted 4-Dimensional Trajectory (4DT). Using Not Only SQL
(NoSQL) database (Cassandra and MongoDB), the 4D trajecto-
ries of related routes are presented, and the possible conflicts are
detected using the strategy of Computing in NoSQL Database.
Compared with other conflict detection algorithms, usually by the
pairwise method with O(n2) at least, the proposed Decision Tree
Pruning Method (DTPM) effectively treats massive data sets. The
4DT data are collected by Trajectory Predictor (TP) concerning
58% of the whole Brazilian air traffic. The comparison results
between Cassandra and MongoDB from the case studies show
the effectiveness of the proposed methods for conflict detection.
In addition, we prove that the conflict resolution approach is
viable for application in real scenarios, finding near-optimal
solutions for the conflicts identified by the framework. Finally,
we also demonstrated the development of sustainable artificial
intelligence in intelligent air transportation to improve safety in
air traffic management.

Index Terms—4-Dimensional Trajectory, Conflict Detection
and Resolution, Decision Tree Pruning Method, Not Only SQL.

I. INTRODUCTION

An essential requirement for efficient Air Traffic Man-
agement (ATM) is the quality of available information,

which must be up-to-date, highly accurate, and reliable. This
enables the user to make the right decisions at the right
time [1], thus supporting scenario prediction, resource allo-
cation, and trajectory management.

Trajectory-based operations (TBO) is a new technology that
defines strategic long-term conflict resolution trajectories that
combine security and efficiency [2], as illustrated in Figure 1.
Different stakeholders on the ground and in the air must share
a standard view of the aircraft trajectories [3]. This task is
made possible by the implementation of Four-dimensional
(4D) navigation, which is a method that adds the time factor
to spatial constraints, thus favoring the accurate prediction
of the aircraft’s position at a given time window [4]. As
a particular computation language to support ATM, Aircraft
Intent Description Language (AIDL) has been developed for
this purpose [3].

Lucas B. Monteiro
Vitor F. Ribeiro
Cristiano P. Garcia
Geraldo P. Rocha Filho
Li Weigang

Fig. 1. Illustration of Trajectory-based operations. The figure shows
three trajectories of aircraft approaching for landing at the airport and
one takeoff trajectory. The yellow squares represent waypoints on an
instrument approach chart (IAC).

Four-dimensional Trajectories (4DT) and Performance-
based navigation (PBN) have become good subjects for re-
search since airspace authorities worldwide established direc-
tives to implement these technologies. The scope of this work
is the development of an intelligent system, which should
support the operation of controllers to maintain a safe and
efficient air transportation environment. Our research aims at
developing a framework for Conflict Detection and Resolution
(CD&R), which uses NoSQL databases and the Decision
Tree Pruning Method to manage the 4-D-based trajectories on
selected routes. The final product is a tool for CD&R among
4D trajectories. Our framework is designed to comply with the
SWIM paradigm (System-Wide Information Management) and
accesses an AIDL trajectory prediction service.

In the implementation of TBO considering 4D Navigation
management increases the challenge for CD&R. Although this
task is a traditional theme in ATM [5], CD&R can be divided
into two main scenarios: without TBO and with TBO. The
general procedure of CD&R can be described in two steps.
The first step (1) is to predict and present the 4D Trajectory
data, which can be estimated from a trajectory predictor. The
second step (2) is to detect the conflicts. If there is any conflict,
the procedure is forwarded to the third step (3) for the conflict
resolution. As the result of step (3), the adjusted 4D trajectory
data is back-propagated to step (1) until there is no conflict.
Then, the procedure is forwarded to the fourth step (4) to
output the Conflict-free 4D Trajectory data.

The following aspects pose a significant challenge in CD&R
with the implementation of TBO: 1) highest safety requirement
for ATM [6]; 2) massive data volume generated by regional
and global traffic in 4D Navigation [7]; 3) uncertainty of
human and environmental factors such as weather and temper-
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ature [8]; 4) repeated computation and management to achieve
conflict-free scenarios [9]. There are some attempts, including
the usage of Graphics Processing Units (GPU) to improve
the computation performance [10], but this limitation remains
unresolved as the statement of the problem in 1997 [11].
Notwithstanding, the critical problem is high computation
complexity for Conflict Detection, for proximity O(n2), where
n is the number of aircraft at a specific time, and it is necessary
to check whether every aircraft are properly separated from
each other.

As the main contribution of this research, a new framework
of CD&R for 4D Navigation management is developed using
a particular scheme of a Not Only SQL (NoSQL) database.
Alongside with NoSQL, compared with other CD&R algo-
rithms (usually using O(n2) pairwise method), the proposed
algorithm uses the decision tree pruning method (DTPM),
which makes it possible to operate a large amount of data
to reduce the computational cost economically. In addition,
the framework puts forward two conflict resolution methods,
which benefit from the proposed conflict detection model and
find the best solutions within a satisfactory time. The research
shows that the development of artificial intelligence promotes
the sustainable development of intelligent air transportation,
thus effectively improving air traffic management.

The remaining of this paper is organized as follows: the state
of the art in CD&R is discussed in Section II. In Section III,
the proposed methods for CD&R are described. Section IV
shows the evaluation of the proposed approach. The conclusion
of the experiment is reported in Section V.

II. RELATED WORK

The need of new procedures in Air Traffic Flow Man-
agement (ATFM) tasks, especially in conflict detection and
resolution regarding to 4D trajectories, automatically insti-
gates the enhancement of the existing technologies. However,
despite the rapid evolution of equipment and software, the
computational requirements for storing and evaluating the
available data are becoming increasingly challenging [12].

Ruiz presents a method based on causal modeling for
collaborative conflict resolution [13]. A set of user-preferred
trajectories is stored in the first moment, and potential conflicts
are discovered. Locally optimal trajectories are generated for
each pair of trajectories and conflicts by considering different
types of maneuvers to solve conflicts. Conflict detection is
evaluated iteratively in this alternative set. Causal exploration
with constraint propagation evaluates branches of the reach-
ability tree of each trajectory and propagates the constraints
through the feasible solution set, which reduces the search
space.

Some solutions develop sophisticated methods by re-
shaping the airspace and applying proper algorithms suitable
to the modeled environment. Ayhan et al. [14] model the space
as a grid of cubes whose centroids are 4D trajectory waypoints.
Conflicts are detected when two or more cubes overlap, and the
resolution is based on a Hidden Markov Model (HMM) that
learns from the historical trajectories and their correlation with
weather parameters. An adapted Viterbi algorithm rearranges

the cubes to prescribe new 4D trajectories. Although their
solution is very useful for strategic deconfliction, the quadratic
complexity inherent to the pairwise CD&R can be improved.

Tang [11] presented an up-to-date review of the literature,
comparing different short, medium, and long-term approaches,
and designing a framework detached from the CD&R. San-
damali et al. [15] proposed treatment of an approach to ATFM
focused on the associated uncertainties, through a probabilistic
model based on chance. The main advantage of the proposed
approach is the ability to process volumes of data online, with
reduced search space.

Trajectory-Based Operations (TBO) were studied by Saba-
tini et al. [16], and Cai et al. [17], among others. Both regard
4D trajectories as airspace resources that must be distributed
among the aircraft efficiently and safely in terms of costs and
conflict avoidance. Sabatini’s approach models a negotiation
scenario with multiple trajectory options for every aircraft
where all 4DT intents are pairwise-compared using a rule-
based model, while Cai’s approach use interpolation on the
trajectory waypoints to detect the conflicts and later a genetic
algorithm is applied to solve the conflicts regarding the fairness
on cost distribution.

Rosenow et. al. [18] established an approach to flight
path optimization with a focus on flight sustainability. The
objective is to identify how climatic uncertainties that demand
trajectory changes impact the sustainability of flights. Because
the emphasis is on optimizing the trajectory and influence
of the flight, the consequences of continuous trajectories in
the whole air space were not observed. This problem will
be addressed in this work by Decision Tree Pruning, and the
alternative trajectories of each flight will be considered in the
modeling, which will be verified in the next sections.

In the field of decision trees, Malakis et. al. [19] presents
a study focused on the accurate classification of air traffic
scenarios, and on how such classification can help to better
understand how flight controllers respond to the complexity of
a traffic situation. A perceived difference for this work is in the
focus given to the investigation of the behavior of controllers,
and not the detection and resolution of conflicts. That is, they
are different mechanisms of assistance to the activity of air
traffic control.

Liu et. al. [20] propose a novel approach to predict the actual
aircraft 4D trajectories, using high-dimension meteorological
features and last filed flight plans. A framework was developed
composed of a matching algorithm, a deep generative model,
a training framework, and an inference framework. The actual
flight state of latitude, longitude, altitude, latitude speed and
longitude speed was modeled as conditional Gaussian mix-
tures, and the parameters will be learned from the proposed
depth generation model. It is a research with a different
focus from the one presented in this work (prediction of
trajectories vs. CD&R), however they are complementary and
a new version of the present framework considering this new
modeling for prediction of conflicts can be studied.

Wang et. al. [21] presents a generic modeling for three-
dimensional CD&R, which separates resolution and conflict
detection, allowing the comparison of different models. Com-
pared with the proposed model, the main differences lies in
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the separation of conflict detection and problem solving. We
deal with this problem in a single step, so as to reduce the
overhead and eliminate the need to completely reprocess the
trajectories when a conflict is detected, as well as the time
required for each cycle of the algorithm. In the proposed
algorithm, the algorithm focuses on proposing solutions within
up to 30 seconds, thus reducing the impact of the final
change/uncertainty in the trajectories.

Finally, Tang [22] introduced a recent review of CD&R
literature, divided these studies into 3 different categories:
long-term, medium-term and short-term, and classified them
according to common features put forward, such as conflict
detection and resolution, initiation of new conflicts, coopera-
tion between aircraft, maneuver of execution, global or paired
execution, etc. The present research, which can be framed in
the short-term group, gathers characteristics that are desirable
in each of the categories, being the only one from the presented
list to be concerned with induced conflicts among the short-
term approaches.

III. PROPOSED SOLUTION

The predicted trajectories are evaluated for conflict detec-
tion. Thus, resolving conflict means adjusting the predefined
flight plans to update the predicted trajectories. The complete
workflow for the proposed conflict detection and resolution is
shown in Figure 2. The main parts of the models are explained
in the following subsections.

A. Trajectory Prediction

A raw trajectory is a sequence of two-dimensional points
that form a connected set of segments. The set of waypoints
P = (p1, ...pn) is able to describe a trajectory in a 2D
plane, but it must be refined to accomodate further control
variables and a chronological constraint in order to describe
a complete 4D trajectory [24]. In other words, we need a set
W = w1, ..., wn provided that wi = (xi, yi, zi, ti) ∈ IR4 is
a 4D-trajectory point where xi, yi, zi are spacial dimensions
and ti is time.

Trajectory computation must regard not only the predefined
set of waypoints informed in the flight plan (origin, destina-
tion, and some fix points in between) but also the parameters
that affect the flight profile, such as takeoff mass and velocity.
Weather and aircraft performance models form the flight script
and are necessary input to any trajectory predictor system [25].
The product of the trajectory computation process is called
Aircraft Intent, which informs precisely how the aircraft
should comply with the flight plan. As a result, unambiguous
description of the intended flight path is delivered.

The continuous communication of complete and up-to-date
information between the aircraft and ground service providers
enable proper decision making processes [26]. In the 4D
navigation context, the main information is the conflict-free
trajectories calculated by the ground operators that must be
issued to the airborne aircraft. This is only possible when
there is common awareness of the air traffic scenario, which
means unequivocal understanding of the flight intentions. The
Aircraft Intent Description Language (AIDL) is used for

this purpose [27]. This language was originally proposed by
Vilaplana et al [4].

The framework built under the AIDL concept, see Figure 2,
is used as a service for the trajectory computation in the
tool we propose in this work. The trajectory prediction used
in this framework receives the aircraft parameters and other
information about the flight intention at a given moment, and
returns the calculated trajectory. This process is performed iter-
atively, and at each new cycle, the trajectory points calculated
by the trajectory prediction are used in the conflict detection
process.A detailed description of the motion equations and
their results can be found in the work of Vilaplana et al [27].

An important feature of this framework is that the modeling
not only considers the standard predicted trajectories but
also considers a group of alternate trajectories. The whole
trajectory set is calculated simultaneously, which allows a
conflict between predicted trajectories to be identified and the
aircraft are grouped in clusters of conflicts. Therefore, it is
possible to seek a solution to combine the predicted trajectories
and alternate trajectories to ensure that the decision to perform
a maneuver (the selection of an alternate trajectory) will not
generate a new conflict. Furthermore, as the alternate trajectory
has also been calculated, the possible conflicts that this new
trajectory could cause can be evaluated by the framework at
the moment of selection.

B. 4D Trajectory Storage Proposal

We designed the proposed NoSQL databases to be com-
pliant to the SWIM paradigm since they can be used to
massive trajectory storage, weather models, and aircraft data
in any detail level. NoSQL refers to an increasing group of
nonrelational data management systems where databases are
not built primarily on tables and generally do not use SQL for
data manipulation. When the nature of data doesn’t require
a relational model, NoSQL database management system
is very useful in dealing with large amounts of data [28].
Although there is no advantage for a specific type of NoSQL
database, compared with the traditional SQL database, the
performance advantage for NoSQL is obvious [29]. Therefore,
we conducted preliminary tests on other types of NoSQL
databases, among which Cassandra and MongoDB performed
best among the evaluated technologies. In order to implement
the functionality of conflict detection in 4D trajectories, one
should define the data type to be retrieved. Relationships
among the entities are not possible through foreign keys. Thus
every distinct relationship depends on the implementation of
distinct entities: column families for Cassandra and collections
for MongoDB, which are important examples of these kinds of
databases. This might result in data replication, but in NoSQL
paradigm, it is actually regarded as a feature instead of a
drawback.

Probable queries desired in this implementation should be:
Flight plans of an aircraft, Trajectory of an aircraft, Points in a
trajectory, Points occupied at time t, and Trajectory conflicts.

The Trajectory Predictor application is able to calculate
trajectories described in AIDL and generate a KML file as
output. This file uses XML syntax to represent each sample
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Fig. 2. Sequence diagram for conflict detection and resolution [23].

Fig. 3. Example of Cassandra and MongoDB data structure.

point in a 4D trajectory. Thus, the sample point attributes
(x, y, h, t) of a predicted trajectory can be used as input to any
conflict detection tool. In the proposed approach, the partition
key is formed by the flight number and the trajectory strategy.
A clustering order on the column named time is applied so
that the trajectory waypoints are ordered by their timestamp
in ascending order. The entities are similarly designed both
in Cassandra and MongoDB databases and can be queried to
bring the whole set of (ordered) waypoints that form some
aircraft’s trajectory.

Our system implements a Cassandra and a MongoDB
databases to store data to facilitate conflict detection. Since
the conflict detection algorithm needs to manipulate a large
amount of data, each information domain was modeled as a
distinct column family or collection of documents for better
performance to read and write data, depending on the subject
database. Each modeled entity represents the information cor-
responding to a record in a relational table. Figure 3 presents
an example of the final data structure in both Cassandra and
MongoDB modeling. We also published the dataset in GitHub,
see link: https://github.com/lucasbmonteiro/translab-cdr.

C. Conflict Detection

A conflict involving two or more airborne aircraft is the
scenario where the minimum separation among them is com-
promised at one or more points in time. Both horizontal
and vertical minimum distances must be ensured during the
whole execution of the flights, which are defined respectively
as 1,000 feet at flight levels below/above 29,000 feet, and
five nautical miles. Therefore, every exclusive zone around
an aircraft is a cylinder centered on it. The time constraint

Fig. 4. Violation of exclusive zones between two aircraft.

is added to the 4D trajectories, so the conflict is detected if
this exclusive spatial zone is violated within a specific time
window. Figure 4 illustrates a situation where two aircraft are
in conflict.

Then, it is possible to identify the logical relation that
defines the existence of a conflict c between aircraft Ai and
Aj at an instant t, according to

cAiAj (t) ↔ (dh
AiAj (t) < Sh) ∧ (dv

AiAj (t) < Sv) (1)

where dh
AiAj (t) is the horizontal distance between Ai and

Aj at instant t, dv
AiAj (t) is the vertical distance between

Ai and Aj at instant t and Sh and Sv are, respectively, the
minimum required horizontal and vertical separation.

The horizontal distance between points wi and wj is given
by the Haversine formula, given by Equation 2. The equation
computes the geodesic distance between the projections of
2D points to the Earth’s sphere surface, where latitude and
longitude are expressed in radians, and R is the Earth’s radius.

∆ϕ = |lati − latj |
∆λ = |longi − longj |

a = sin2
(∆ϕ

2

)
+ cos(lati) · cos(latj) · sin2

(∆λ

2

)
c = 2 · arctan2

(√
a,
√
1− a

)
d
wi,wj

h = R.c

(2)

The conflict detection algorithm implements the separation
restrictions between the aircraft described in the Equation 1:
at a specific time interval, two points must be at a minimum
distance both vertically and horizontally. If all the conditions
expressed by the equation are satisfied, the points compared
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Fig. 5. Example of trajectory combination tree model.

conflict; otherwise, if at least one of the conditions fails, there
is no conflict between the analyzed points.

The proposed approach allows the points to be analyzed
in pairs, guaranteeing greater efficiency in the reduction of
search space: as the points are ordered by its altitude, if there
is a vertical separation between the first and second points,
it is possible to infer that there is no conflict between the
first and third points and the following points. In other words,
no further verification involving the first point is required.
This approach enables, in the best case, the identification
of all conflicts in linear time. If there is a vertical conflict
between two successive points, the algorithm then verifies
if there is a minimum horizontal separation between both,
registering a positive conflict case. If there is no conflict, the
algorithm checks whether there is a violation of the minimum
vertical separation between the first and third points (worst
case and average case). From the point that there is no vertical
separation violation, the first point is decayed, that is, it does
not need to be parsed again.

D. Conflict Resolution

In the conflict detection stage of the framework, conflict
clusters were formed, each cluster containing the totality of air-
craft involved in some conflict and their respective trajectories,
default and alternatives. The challenge becomes to identify, for
each cluster, an optimal combination of individual trajectories
that not only represent the non-occurrence of conflict, but also
the most satisfactory combination, based on some previously
chosen policy (flight cost, priorities, impact on airspace, etc.).

In conflict resolution modeling, the possible states, that
is, the combinations of all trajectories of all aircraft, were
organized in the form of the tree data structure, so that each
level of the tree corresponds to an aircraft, each node of a
level corresponds to a trajectory of that aircraft and a path
between the root node and a leaf node represents the choice
of a combination of trajectories. This modeling are represented
in Figure 5.

Each node of the tree was assigned a score (parameter)
that represents how suitable that choice is, that is, nodes that
represent a higher score indicate a worse choice, while nodes
that represent a better choice have a lower score. In this way,
nodes that indicate trajectories involved in conflicts have a

maximum score, in order to discourage the choice of any
combination that contains that node (paths that reach a leaf
node through this node).

The suggested modeling makes it possible to identify an
optimal combination of trajectories, without conflicts, using
classical search algorithms. Two approaches based on this
class of algorithms were implemented: i) brute force, based
on the depth-first search (DFS) algorithm; and ii) PRUNE,
based on alpha-beta.

DFS Approach
The approach based on DFS consists of the complete

assembly of the tree (all possible states), and the search by
means of brute force, that is, all nodes are visited. It is an
advantageous algorithm in the sense that it requires linear
space in relation to the search depth [30], but it has the
disadvantage of becoming unfeasible as the size of the tree
increases (in number of flights and trajectories).

In the IV-B section, it is possible to verify that such an
approach presents excellent results in smaller scenarios, that
is, fewer aircraft and/or fewer trajectories per aircraft. It is
likely that the DFS meets most of the current air traffic needs,
but considering the prospect of a continuous increase in air
traffic demand [31], it was necessary to develop a second
model that allows the identification of optimal trajectories in
complex scenarios.

PRUNING Approach
In the PRUNING approach, inspired by the classic Alpha-

Beta algorithm, the assembly and tree search try to avoid that
all possible nodes are investigated. This feature is obtained
with the computation, simultaneously with the assembly of the
tree, of the accumulated score up to the study node, eliminating
the need to add new nodes if a cost worse than the minimum
achieved so far is already identified.

The elimination of known worse nodes/paths allows the
algorithm to reduce the search space, increasing the ability
to analyze larger trees considering the same computational
resources used in DFS. In the IV-B section it will be possible
to identify this reduction in the search space and, consequently,
the analysis of much more complex scenarios, probably suffi-
cient for the current and future situation of global air traffic.

E. Space Search

A problem space consists of a set of states of the problem,
and a set of operators that change the state. For example, in the
Eight Puzzle, the states are the diferent possible permutations
of the tiles, and the operators slide a tile into the blank
position. A problem instance is a problem space together with
an initial state and a goal state. A problem-space graph is often
used to represent a problem space. The states of the space are
represented by nodes of the graph, and the operations by edges
between nodes. Edges may be undirected or directed, depend-
ing on whether their corresponding operators are reversible or
not. The task in a single-agent path-finding problem is to find
a path in the graph from the initial node to a goal node [30].

Storing data about these possible states requires enormous
computing power. for example, if we consider 5 aircraft in the
same cluster, with 40 trajectories for each aircraft (1 default
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and 39 alternatives), to identify the optimal solution, it will be
necessary to evaluate 108 possible combinations between each
of the trajectories of each flight. The number of possible states
that can be analyzed increases exponentially and can also be
expressed by Equation 3:

E(Qa, Qt) = QQa

t (3)

Where, Qa indicates the number of aircraft and Qt the
number of trajectories per aircraft, default and alternatives.
Equation 3 can be used to calculate the number of possi-
ble states (search space). For complex configurations, it is
necessary to use computing technology to evaluate as many
situations as possible. It can also show effectiveness in the big
data environment through the suggested method.

IV. CASE STUDY

This section presents the case study that uses real data from
the Brazilian air traffic scenario to evaluate the applicability
of the proposed approach using Cassandra and MongoDB.

A. Simulation Scenario

Two different databases were used to analyze the proposed
framework: one based on real data, focusing on the per-
formance of the conflict detection component; and another
with randomly generated data, for evaluation of the conflict
resolution component.

The simulation scenario for conflict detection is composed
by a selection of nine airports in Brazil. We chose to use
information from local air traffic, despite Brazil being at the
forefront of the world in terms of operational safety in civil
aviation [32], because the growth of air traffic demand requires
the continuous development of new methods and operation
modes, which can ensure the safety of air transportation even
when the scale increases. The country is the second in the
world in number of airports, and the selected ones serve the
majority of the Brazilian population. Combined, they were
responsible for 58% of the national air traffic in 2018 [33].
Therefore they are a proper representation of the Brazilian air
traffic scenario for this simulation.

The repetitive flight database was collected from the free
website of the Brazilian Air Navigation Management Center
(CGNA), which contains a list of flight plans with their
respective validity periods. Among the valid flights, those
with validity until June 2019 were selected. This selection did
not consider the frequency and periodicity of such flights in
general. Among the selected plans, 1,221 subject flights are
filtered for simulation, as long as these flights have origin and
destination airports in the selected airport set.

Once the database is fully populated, all flight plans (RPL)
are fetched and submitted to the engine that generates the
input files for TP. Then, the batch script executes the trajectory
prediction for each flight. The client application accesses the
output trajectories and inserts every sampled waypoint into
the database. After running the trajectory prediction module, it
was possible to have a comprehensive overview of the scenario
occupation.

In a second simulation scenario, the flight plans were
replicated with updated flight levels and Mach speeds to
create different strategies, equivalent to alternate trajectories.
In total, the distinct parameter combinations yield five different
alternative trajectories to be selected by the aircraft subject to
decision making.

Simulated scenarios with randomly generated data were
used to evaluate the proposal for conflict resolution, allowing
greater control and complexity of the tests, since in the
executions with real data, the identified conflict clusters were
composed, mostly, by few combinations of aircraft. In this
way, fictitious clusters with few to dozens of aircraft in conflict
were considered, and a number of trajectories in the order of
up to hundreds of possible cases.

The tests were performed considering the same input pa-
rameters, both for the DFS embroidery and for the PRUNING
approach. Scenarios with different numbers of aircraft in the
same cluster were considered (3, 5, 7, 9, 12, 15, 18, 20, 25
and 30 aircraft), and, for each scenario, different amounts of
trajectories considered for each aircraft, that is, the standard
trajectory and as many alternative trajectories (3, 7, 10, 15,
20, 25, 30, 40 and 50).

Because the simulation data is used in the analysis of con-
flict resolution method, it was decided to define the processing
time as the stop standard, that is, the number of flights and
trajectories increases to a certain limit of execution time, which
could make it infeasible in the real world. Therefore, only the
results of the conflict resolution algorithm whose duration does
not exceed 120 seconds were considered.

Additionally, for each combination of number of aircraft
and number of trajectories per aircraft, successive tests were
performed (30 repetitions), in order to ensure that the results
obtained are statistically sustainable, totaling 2,700 executions.

B. Results
In this subsection, the results of tests carried out with the

proposed framework will be presented, focusing mainly on
the performance of the CD&R models, considering the large
volume of processed trajectory data.

Conflict detection and Performance evaluation
The flight path of each aircraft is represented as a sequence

of waypoints sampled by TP. A total of 160,022 waypoints
were sampled by the trajectory predictor, provided that the
database was filled with data corresponding to a whole day of
operation.

Following the trajectory prediction, the conflict detection
procedure is triggered, and the conflicts found are inserted into
the database as well. The waypoint database is then queried
by time window, and the points occupying the airspace in the
given moment of time are returned. For simulation purposes,
three conflict detection procedures were performed: (i) Default
conflicts the conflicts naturally found if the flight plans are
performed as originally defined by the RPL; (ii) Alternate
conflicts, the conflicts found among all original trajectories
plus the alternate trajectories; and (iii) Time-window conflicts,
the conflicts are evaluated within a specific look-ahead time.

The simulations were performed with the following con-
figurations: a HP Z220CMT BR Workstation equipped with
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TABLE I
PERFORMANCE OF CONFLICT DETECTION AMONG DEFAULT

TRAJECTORIES. THE NUMBER OF CONFLICTS IS ALWAYS
THE SAME BECAUSE THE TESTS WERE RUN WITH THE

SAME DATASET.

Cassandra MongoDB
Threads Waypoints Conflicts Time (s) Time (S)
1 160,022 330 0.936 0.518
2 160,022 330 0.516 0.269
4 160,022 330 0.331 0.2
8 160,022 330 0.286 0.159
16 160,022 330 0.298 0.19
32 160,022 330 0.25 0.207

TABLE II
PERFORMANCE OF CONFLICT DETECTION AMONG ALL

STRATEGIC TRAJECTORIES. THESE NUMBERS SHOW THAT
THE RESULTS ARE CONSISTENT BY INCREASING THE

NUMBER OF THREADS TO SPEED UP THE EXECUTION OF
THE ALGORITHM, AND THE EXECUTION TIME CONTINUES

TO BE SHORTENED WHEN 8 THREADS ARE ADDED.

Cassandra MongoDB
Threads Waypoints Conflicts Time (s) Time (S)
1 833,072 8,466 1m12,025s 1m20,319s
2 833,072 8,466 0m38,126s 0m42,293s
4 833,072 8,466 0m23,075s 0m24,802s
8 833,072 8,466 0m15,798s 0m19,169s
16 833,072 8,466 0m15,498s 0m18,605s
32 833,072 8,466 0m16,216s 0m17,042s

a Intel® Xeon® CPU E3-1270 V2 3.50GHz, 32GB DDR3
SDRAM 800MHz and Microsoft Windows 7 Professional 64-
bit as operating system. This situation allows the conflict
detection process to be executed in parallel and in sequence,
and the allocation of threads is managed programmatically.
Table I presents the performance of conflict detection using the
default trajectories only. The execution was performed using
up to 2n threads, where 0 ≤ n ≤ 5. Similarly, the strategic
approach was also evaluated. Table II show the performance
of conflict detection using the combination of all possible
trajectories to be performed by the aircraft, with different
combinations of flight plan executions.

Figure 6 shows an example of a conflict between two flights.
The trajectory represented by an orange path belongs to a flight
departing from Galeão to Congonhas, whilst the trajectory
represented by a teal line is performed by a flight departing
from Santos Dumont to Congonhas. Although their distinct
cruise levels (FL340 and FL300 respectively) grant the safe
separation for most part of the flight, the loss of separation is
detected when both aircraft are in the descent procedure.

It is essential to clarify that the proposed conflict prediction
procedure comprises a whole day of operations. Thus every
scheduled flight is evaluated. For each flight, four more strate-
gies are provided, meaning that every aircraft has five different
alternate trajectories to be performed in case of conflict. This
justifies the large number of conflicts found: Firstly, the default
flight plans insert 330 conflicts in the scenario throughout the
day. The novel conflict detection methodology presented in
this work also takes into consideration the probable conflicts
that should appear in every possible combination of pre-

Fig. 6. A conflict detected between two aircraft.

Fig. 7. Performance comparison with threaded speed-up.

selected alternate trajectories summing up to 6,105 trajectories
and 833,072 waypoints.

Although this procedure completes the strategic conflict
prediction in a whole day, further assessment was performed
for sequential time windows comprising the evaluation of one
hour from the current moment. This evaluation is important
to demonstrate the efficiency of the algorithm in a dynamic
scenario where conflicts should be detected on-demand, typ-
ically in a short-term tactical operation, to be implemented
as part of a future work. Table III shows the performance
obtained for conflict detection for default trajectories and
alternate trajectories during odd time period. Both scenarios
were performed in parallel execution with 16 threads.

The algorithm for conflict detection was verified to be far
more efficient than the algorithms found in the state-of-art
survey concerning the execution time. In fact, the NoSQL
database method eliminates the need for data pre-processing
for applications, so the data set provided is considered as a
pruned search space. About adding threads to speed up the
execution, we found the consistent results. As expected, Figure
7 shows that the execution time dropped consistently up to 8
threads due to the CPU core virtualization feature.

Conflict Resolution Analysis
Table IV shows that DFS algorithm can find the optimal

solution within the predetermined time limit for as many as
108 possible combinations of search spaces. This limitation
means that with the increase of the number of flights, the
number of trajectories will decrease, which is a predictable
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TABLE III
TIME-WINDOW CONFLICT DETECTION FOR DEFAULT AND ALTERNATE TRAJECTORIES.

Default trajectories Strategic trajectories
Cassandra MongoDB Cassandra MongoDB

Hour Waypoints Conflicts Time (s) Time (s) Waypoints Conflicts Time (s) Time (s)
1:00 4,764 2 0.012 0.007 24,316 96 0.296 0,228
3:00 1,018 0 0.002 0.002 5,133 11 0.096 0,074
5:00 0 0 0.002 0.002 0 0 0.002 0.001
7:00 405 0 0.002 0.001 2,158 0 0.002 0.002
9:00 6,086 8 0.015 0.016 32,484 179 0.282 0.307
11:00 10,220 22 0.013 0.012 53,166 563 1.505 1.421
13:00 11,135 30 0.021 0.008 58,029 711 1.277 1.3
15:00 9,530 24 0.012 0.01 50,101 673 0.952 0.929
17:00 8,613 14 0.017 0.024 44,495 401 0.496 0.521
19:00 9,112 16 0.017 0.008 47,306 410 0.484 0.52
21:00 10,692 29 0.02 0.011 55,789 768 0.626 0.544
23:00 9,320 22 0.033 0.046 48,065 550 0.39 0.297

Total 160,022 330 0.372 0.278 833,072 8,466 13.772 13.951

TABLE IV
TESTS RESULTS FOR DFS APPROACH.

Execution Possible =
Flight Traject. Time (ms) Verified Steps
3 3 0.33 101

3 20 2.43 103

3 50 22.30 105

9 3 7.83 104

9 7 8,737.60 107

12 3 145.27 105

15 3 3,858.57 107

18 3 106,181.87 108

behavior. In a word, if the model considers as many as
three trajectories (one default trajectory and two alternative
trajectories) for each aircraft in a scene or clusters involving
18 aircraft in a conflict situation, it is possible to find the
best combination of trajectories within the time limit, and find
a solution within 1m46s on average, covering 100% search
space of 108 states orders. At the other extreme, considering
clusters with three conflicting aircraft, the algorithm can find
the optimal solution considering 50 trajectories of each aircraft
in only 22.3ms, covering 100% of a search space.

These figures show that the model becomes feasible in the
case of fewer aircraft, which may be enough for the current
air transportation situation. As an example, considering the
assumption that 5 aircraft are in a conflict, the algorithm would
be able to process as many as 40 alternative trajectories for
each aircraft in about 18 seconds (average), which allows the
aircraft to work comfortably in uncertain conditions.

Table V indicates that the PRUNING approach can handle
even larger conflict clusters, with parameters high enough to
guarantee coverage of the cases found in a real scenario. It was
possible to solve, at one extreme, a cluster of conflicts with
30 aircraft and 30 trajectories for each aircraft, with a solution
found, on average, in less than 50 seconds. If we consider that,
in real scenarios, the clusters should not exceed 15 different
aircraft, the model found the optimal solution, in an average
time of 250.57 ms, processing 50 trajectories for each of the
aircraft involved in the conflict (search space equivalent to
1025 For scenarios with fewer aircraft, which should be more

TABLE V
TESTS RESULTS FOR PRUNING APPROACH.

Execution Possible Verified Search
Flight Traject. Time (ms) Steps (p) Steps (v) (v/p)
3 10 0.00 103 101 10−2

3 50 0.43 105 102 10−3

9 3 0.13 104 101 10−3

9 7 0.63 107 102 10−5

9 30 7.07 1013 103 10−10

9 50 15.20 1015 104 10−11

18 3 3.57 108 102 10−6

18 10 58.07 1018 103 10−15

18 50 924.20 1030 105 10−25

30 7 3,939.13 1025 103 10−22

30 25 39,099.73 1041 104 10−37

30 30 47,622.43 1044 105 10−39

Fig. 8. Time execution distribution for PRUNING approach.

frequent, the solution was found in approximately 1 ms.
The stability of the model can be evaluated by continuously

repeating the same scenario (the combination of flight times
and each flight trajectory). Figure 8 shows the execution time
distribution of different numbers of aircraft, focusing on the
scenario with the largest number of trajectories. It is possible
to identify, by the graph, that the most of the executions were
close to the average performance, that is, average execution
time, indicating that the proposed model is stable.
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Finally, a conclusive analysis considers the comparison
between the DFS and PRUNING method with respect to the
real scenario, that is, the number of aircraft serving the current
air traffic and the estimation of the trajectory of each aircraft.
Figure 9 shows the surface corresponding to the distribution of
the results obtained by DFS (a) and PRUNE (b). Taking into
account the axis execution time, number of flights in a conflict
group and the computed trajectories of each aircraft in the
group, it proves the behavioral difference between these two
methods. Considering that, in the real scenario, the algorithm
should not take more than 120 seconds to present the solution,
most of the surface corresponding to the DFS approach (a)
is above the virtual plane of 120,000 milliseconds, while
the surface corresponding to the PRUNE approach (b) lies
entirely below the same virtual plane. Therefore, for all the
test combinations shown in the figure, PRUNE managed to find
the solution in a satisfactory time, while in the DFS method,
this behavior was only verified in the simplest case (near the
starting point, there are fewer aircraft and fewer trajectories
per aircraft).

The results show that the proposed methods are feasible
in the real world in terms of execution time. It can be seen
in Table V, that, considering the possibility of executing the
two methods in an acceptable time (less than 120 seconds),
the PRUNING method always shows better results than DFS
method. In the most complicated cases, considering 18 aircraft
in conflict and 3 trajectories for each aircraft, compared with
DFS method (106.2 seconds), PRUNING method is almost
30,000 times faster (3.57 milliseconds). Also in these cases,
considering PRUNING method, it is possible to find a satisfac-
tory solution to the conflicts in the cluster in less than 1 minute
(47.6 seconds). These conflicts are more complicated than
what should be observed in the actual scene (conflict involve
30 different aircraft, 30 alternative trajectories are computed
for each aircraft, and a search space of 1044 possible states
is generated). One possibility of adoption by the authorities is
to integrate the model with the necessary tools for the inputs
expected by the framework, comparing the results obtained by
the application with the instructions issued by the ATC. In the
tests, uncertain factors, such as noise and weather conditions,
were not considered. However, by adding virtual obstacles or
random disturbances to the trajectories, the model can adapt
to this type of constraint. This kind of simulation will be
considered in the next step of research.

V. CONCLUSION

The main contribution of this research is developing a
new computational solution for CD&R in 4D trajectories
that incorporates a trajectory predictor, decision tree pruning
method, and databases specifically designed for big data.
The developed application consumes information from sev-
eral sources conveniently aggregated in NoSQL Cassandra
and MongoDB databases. It invokes an external service for
trajectory predictions in a successful attempt to adequate the
ATM operations to the SWIM architecture paradigm.

Novel methods for 4D trajectory evaluation were presented
by comparison between Cassandra and MongoDB. The pro-
posed storage architecture is designed to comply with SWIM

Fig. 9. Comparison between proposed approaches, DFS (a) and
PRUNE (b).

paradigm, as this architecture can manage and provide infor-
mation to support the decision-making process of air traffic
stakeholders. However, this application does not mean to
replace the air traffic controller (ATCO), but as a decision-
making support tool for the human operator. This part of the
Human-Machine integration in ATM will be further studied as
a new direction for Intelligent Air Transportation.

As future work, other types of search algorithms can be
studied in terms of performance and compared with the two
methods introduced in this paper. Additionally, other NoSQL
database technologies can be investigated as well, evaluating
possible impacts on the presented modeling.
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