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Abstract—Brazil is the sixth largest emitter of greenhouse gases
(GHG), with land use change and agriculture being the main
source of these emissions. The recent expansion of agriculture in
Brazil has been occurring mainly in the MATOPIBA region, a
territorial division inserted on the Cerrado. Clustering methods
are useful for driving hyper-local GHG emission reduction
strategies, but they have yet to be applied at the municipal
level, nor from the emissions of various economic sectors. In
order to contribute to the identification of the most critical
areas in relation to GHG emissions for MATOPIBA, this study
proposes an approach of municipal clustering according to
the percentage contribution of Agriculture, Land Use Change,
Energy and Waste sectors in total emissions. The clustering was
performed with the k-means algorithm, using the elbow method
and the silhouette score to define the number of clusters. In
addition, statistical and geostatistical analyses were conducted
to assess the consistency and spatial autocorrelation of the
groups formed. The approach was able to generate six clusters
with distinct characteristics, showing the heterogeneous profile
of GHG emissions from MATOPIBA. At the same time, the
clustering of similar municipalities can help in making decisions
about the best pro-environmental measures to reduce/remove
GHG to contain global warming.

Index Terms—biodiversity, carbon offset pricing, climate
change impact, kmeans, sustainability risk assessment, spatial
autocorrelation.

I. INTRODUCTION

B razil is globally important for food production and
conservation of natural resources [1]–[3]. However, the

country is currently the sixth largest emitter of greenhouse
gases (GHG). In 2020 it emitted approximately 2.16 billion
tons of equivalent CO2 (GtCO2e), being the Agriculture and
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Land Use Change sectors achieved the largest contribution and
represented 66% of emissions when added [4].

Due to this high level of emissions, the Brazilian govern-
ment created pro-environmental strategies to mitigate emis-
sions by reducing deforestation, without harming agricultural
production. The main actions are the Brazilian credit program
for low-carbon agriculture (ABC+) [5] and Payment for En-
vironmental Services (PES). These strategies are important
to encourage the maintenance, recovery and improvement
of Brazilian ecosystems. They also provide benefits such as
genetic heritage and associated traditional knowledge preser-
vation, reduction of deforestation and forest degradation, and
climate regulation [6], [7].

One of the biomes that needs these actions is the Cerrado,
which has been the focus of agricultural and industrial ex-
pansion over the last 60 years [8]. This biome has suffered an
alarming loss of native forest [1], [9], [10]. In the last 40 years
it has reduced native cover to less than half of its original size
[3]. These losses are critical, given the geographic importance,
ecological characteristics and biodiversity of this biome [11],
[12]. The recent agricultural expansion in Cerrado occurred
mainly in the north of the biome, a region named MATOPIBA,
acronym for the states of Maranhão (MA), Tocantins (TO),
Piauí (PI) and Bahia (BA), known as the last agricultural
frontier of Brazil. MATOPIBA is a territorial division created
through a technical cooperation agreement signed in 2014
between some government departments and federal agencies
to designate the potential area for agricultural expansion [13].

MATOPIBA is being extensively explored for the cultivation
of agricultural commodities and beef production [8]. Soybean
stands out among the main crops in the region [14], but other
crops such as corn, cotton and rice also play a significant
role [3], [15]. The strong agricultural expansion, based on the
suppression of the native forest of the Cerrado/MATOPIBA,
caused the temperature of this region to increase by 1◦C, in
2021, being the biggest increase registered in Brazil [16]. This
scenario highlights the low effectiveness of the implementation
of the current GHG mitigation plans [17] and the need
to strengthen actions that ensure compliance with the Paris
agreement to contain global warming.

In this context, clustering methods have been used to
contribute to strategies for monitoring and containing climate
change. Among them, hierarchical clustering by Ward’s link-
age was used to identify similar rainfall patterns [18], [19] and
to locate areas with homogeneous distribution of fire outbreaks

https://orcid.org/0000-0003-4924-4666
https://orcid.org/0000-0003-3475-4495
https://orcid.org/0000-0003-0840-1039
https://orcid.org/0000-0002-9637-372X
https://orcid.org/0000-0001-7248-8613
https://orcid.org/0000-0002-0101-483X


2340 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 11, NOVEMBER 2022

[20]. Recently, this method was used to analyze Brazilian
biomes from the total emissions of GHG and the distribution
of fire outbreaks [21].

Although clustering by biome can help environmental agen-
cies, further studies of clustering GHG emissions from eco-
nomic sources at the municipal level in MATOPIBA can help
in public policies for conservation and sustainability, as well as
efforts to minimize GHG emissions. Thus, clustering allows to
identify the municipalities in which the application of a certain
sort of pro-environmental action could have the greatest effect
on GHG reduction. This decreases monitoring expenses and
maximizes economic resources for the implementation of these
actions.

Detailed emission information by municipality is available
on the The Greenhouse Gas Emission and Removal Estimating
System (SEEG) platform for five major economic sectors:
Agriculture, Land Use Change (LUC), Energy, Industrial Pro-
cesses and Product Use (IPPU) and Waste [17]. Therefore,
the information of this platform could help in gaining a
comprehensive understanding of MATOPIBA emissions by
identifying patterns and exceptions at municipal level.

Given the above, the objectives of this work are: (i) to
propose an approach based on k-means to group municipalities
according to their GHG emissions by sector; and (ii) to
conduct a case study with the MATOPIBA region to assess
the ability of the proposed approach to identify and to map
similarities and differences in municipal emission profiles,
driving hyper-local GHG emission reduction strategies.

II. SEEG PLATFORM

SEEG estimates annual emissions of GHG for the whole of
Brazil according to the IPPU guidelines and the methodology
of the Brazilian Inventories of Anthropogenic Emissions and
Removals of GHG, prepared by the Ministry of Science,
Technology and Innovation [22]. Estimated emissions are
available for all GHG and also considering the equivalence of
other gases in relation to CO2. The equivalence is done with
Global Warming Potential (GWP) and Global Temperature
Change Potential (GTP). In addition, gross and net emissions
are provided, and removals are accounted for in net emissions.

The SEEG platform [23] has five major sectors that are
sources of emissions. These sectors are Agriculture, Energy,
LUC, IPPU, they are treated with the same level of detail
contained in the Intergovernmental Panel on Climate Change
emission inventories. The platform presents disaggregation at
national, state and municipal levels. Table I shows the main
emission sources for each sector in Brazil in 2018 [17].

III. MODEL CONSTRUCTION AND EVALUATION

The characterization of the emission profile of the
MATOPIBA municipalities was carried out in four main
stages: (i) the collection of emission data by municipality in
the SEEG platform and georeferenced data from the Geodata
BR project; (ii) the pre-processing, with imputation of missing
values and transformations of the data; (iii) the clustering
of municipalities with similar profiles; and (iv) the cluster
analysis to identify existing profiles. The entire process was
performed using Python and it was available on GitHub [24].

TABLE I
MAIN GHG EMITTING ACTIVITIES BY SECTOR IN BRAZIL

IN 2018 [17], RANKED FROM HIGHEST TO LOWEST
EMITTER.

Sector Main sources of direct emission in the sector
LUC Deforestation, liming and forest waste burning.
Agriculture Breeding of bovine herd (by enteric fermentation),

application of synthetic fertilizers, management of
animal waste, rice cultivation irrigated and residue
burning (such as sugarcane straw).

Energy Transport (divided into cargo and passengers), energy
consumption in industry, fuel production and electricity
generation.

IPPU Steel industry (such as pig iron and steel) and cement
production.

Waste Disposal of urban solid waste in controlled landfills,
sanitary landfills and dumps, and the treatment of
industrial and domestic effluents and waste incineration.

A. Data Collection

Data for the Agriculture, LUC, Energy, and Waste sec-
tors were collected from the SEEG platform, taking into
account the emissions of the 337 municipalities that form
the MATOPIBA. Emissions from IPPU sector were not used
due to lack of data of this sector for MATOPIBA. The gross
CO2 equivalent emissions were collected using the GWP
methodology for 2018, the last year available until the access
date (October 9th, 2021). In addition, georeferenced data were
collected for the groups spatial visualization, from the Geodata
BR project [25].

B. Pre-Processing

The first pre-processing step was imputation of missing
values of nine municipalities without Energy emissions in-
formation. For this we use the method for multivariate fea-
ture imputation from the scikit-learn library [26]. Preliminary
analysis identified a high variability of absolute values for
municipal emissions, as well as several outliers, which made
it difficult to form the groups even after normalizing the data.
To mitigate this effect, the municipalities were clustered using
contributions from each sector, and absolute emissions were
analyzed. The emissions contribution from a sector CES was
defined as the absolute emission of the sector (ES) divided by
the absolute emission of the four sectors Et. In this way, four
new features were created according to (1).

CES =
ES

Et
(1)

C. Clustering

A k-means algorithm was used with scikit-learn to identify
MATOPIBA emission profiles. The first step was the identi-
fication of potential existing groups using the elbow method
with initial k (ki) equals to two and final k (kf ) equals to
30 groups of municipalities. For each value of k, the Within-
Cluster Sum of Square (WCSS) was calculated. Finally, the
value of kc was defined as the elbow point, which results
in the greatest distance between the (WCSS[k]) curve and
a straight line drawn between the points (ki,WCSS[ki])
and (kf ,WCSS[kf ]). The distance calculation (d[k]) for
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each value of k is presented in (2), where y = WCSS[k],
yi = WCSS[ki] and yf = WCSS[kf ].

d[k] =
|(yi − yf )k − (ki − kf )y + kfyi − yfki|√

(yi − yf )2 + (ki − kf )2
(2)

Furthermore, the silhouette value was calculated, which
weights the distances of a point from the center of its re-
spective cluster with the center of neighboring clusters. The
silhouette value was calculated for the three potential group
values found with the elbow method (kc − 1, kc and kc + 1).
Both methods were used because they are recommended to
find the value of k in small databases [2].

D. Consistency Assessment of the Groups

To assess the consistency of the identified groups, we tested
the existence of significant differences between the means of
groups emissions for each of the sectors. As the groups are
constituted by different municipalities, it was assumed that
they are independent samples. Thus, the t-student test was used
to compare normal distributions and non-different variances.
The U Mann-Whitney test was used for distributions that did
not match the criterion of normality or homoscedasticity.

The null hypothesis was tested that the emissions of a given
sector of a group were equal to the emissions of the same
sector of another group. If p < 0.05, the null hypothesis was
rejected and the emissions were assumed to be different. In
this analysis, we seek to assess if the used approach to identify
the groups allowed us to find groups that have significant
differences. All statistical analyses were performed using scipy
[27]

E. Interpretation of Groups

With the groups defined, we aim to understand the distinct
characteristics of each group, which might be neglected when
considering MATOPIBA as a homogeneous region. First, the
average contributions of each sector to each group’s emissions
were observed. This allowed us to identify the predominance
of one or more sectors inside the groups of municipalities.
Furthermore, we observed the spatial distribution of the groups
using GeoPandas [28].

In addition, we detect spatial autocorrelations among
MATOPIBA municipalities based on their emissions contri-
bution per sector using the univariate Moran index. We used
the Global Moran I to calculate the degree of global spatial
autocorrelation for each emission source in MATOPIBA. For
local autocorrelation, we calculated the Local Indicators of
Spatial Association (LISA) to determine similarity and corre-
lation among the municipalities and nearby municipalities. All
autocorrelation analyses were performed using PySAL [29].

Once the normality of the data was confirmed, Pearson
correlations between emissions from different sectors and the
average absolute emissions of each group of municipalities
were evaluated. With this information, we sought to find prior-
ity groups for the application of emission-reduction measures,
as well as to highlight probable heterogeneity between the
emission profiles of the municipalities in MATOPIBA.

IV. MATOPIBA’S CASE STUDY

In this section, we presented the results of the proposed
approach with MATOPIBA emission data. Therefore, we pre-
sented the discovered groups, their statistical comparison and
spatial distribution and autocorrelation.

A. Consistency of Identified Groups

The performance of the elbow method shown that the ideal
group number is six (k = 6), as illustrated in Fig. 1a. In
addition, silhouette coefficients were evaluated for k = 5
and k = 7. The silhouette coefficients (CS) reinforced the
assumption of the existence of six groups, since this division
had the highest coefficient (CS = 0.424), as shown in Fig. 1b.
The negative coefficients presented for some municipalities
in G1, G4 and G6 groups (Fig. 1b) indicate that these
municipalities may belong to other groups. The low occurrence
of municipalities with negative CS indicates that the formed
groups are consistent.

Fig. 1. Selection of the number of groups using the elbow method
(a) and the silhouette score (b).

The group heterogeneity is verified in Fig. 2, which shows
the means and standard deviations for each group by sector.
The density estimation of the emissions from each sector to
each group is represented in Fig. 2a. It is observed that the
groups have greater variation in relation to Agriculture, LUC
and Energy than Waste.

Sixty tests were performed to compare all groups in pairs
for each sector, with only eight tests did not show a significant
difference, as shown in Fig 2b. It is clear that all groups differ
statistically from the others for at least two emission sectors.
Therefore, it was possible to prove the ability of the proposed
model to identify groups with different emission profiles in
MATOPIBA.

B. Groups Presentation

As shown in Table II, in 2018, the main responsible
for MATOPIBA emissions was LUC sector with 54.25% of
emissions, mainly due to the replacement of native vegetation
with monoculture plantations such as soybeans, corn and
cotton and livestock [30], [31]. G1, the group with the most
municipalities, has an emission profile similar to MATOPIBA
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TABLE II
COMPOSITION OF GROUPS BY THE PROPORTION OF EMISSIONS FROM SECTOR AND THE PROPORTION OF MUNICIPALITIES

BY STATE.

Groups Emissions(%) Municipalities
Agr LUC Ener Was MA (%) TO (%) PI (%) BA (%) Total

MATOPIBA 35.48 54.25 7.53 2.74 40.06 41.25 9.79 8.90 337
G1 30.85 62.38 4.44 2.33 45.08 40.16 9.02 5.74 122
G2 51.07 42.48 4.34 2.11 30.65 61.29 6.45 1.61 62
G3 14.70 17.42 60.65 7.23 40.00 50.00 0.00 10.00 10
G4 75.18 15.63 5.66 3.53 8.57 42.86 11.43 37.14 35
G5 16.90 78.57 3.11 1.42 54.88 24.39 14.63 6.10 82
G6 33.16 33.66 25.70 7.47 34.62 46.15 7.69 11.54 26

ns

Fig. 2. Comparison of the emissions by sectors and groups. (a)
Density estimation comparison of the emissions percentage from each
economic sector to each group. (b) Average proportion comparison
of emissions, number of municipalities allocated to each group and
identification of sectors without significant difference (ns).

as a whole. In terms of emission contributions, the difference
between them is less than 10%.

In Fig. 2 we observe proximity between G1 and G5.
However, G5 stands out for the great contribution of LUC
emissions (78.57%, Table II). In contrast to G5, the G4
group stands out for agricultural emissions (75.18%, Table II).
Following G4 is the G2 group, which has a higher percentage
of GHG emissions related to agriculture (51.07%, Table II),
followed by emissions from LUC (42.48%, Table II). G6 has
the best sector balance, with Agriculture, LUC and Energy
each contributing over 25%. Finally, G3 stands out for being
the only group with the largest contribution of emissions due
to Energy, with 60.65% of emissions, as shown in Table II.

C. Group’s Spatial Distribution and Autocorrelation

In Table II we observe that all groups have more than
79% of cities belonging to Tocantins or Maranhão. This is
expected since these states represent 81% of MATOPIBA’s
cities. Being G5 the highest number of cities in Maranhão
state (54.88%). The only exception is the G4 group, with a
strong representation of cities in Bahia (37.14%) and a low
representation of cities in Maranhão.

The heterogeneity of MATOPIBA is highlighted in Fig 3a,
as the groups have municipalities distributed over the region,
especially for G2. The municipalities of G6 and G2 are

dispersed as well, but are absent from much of the region.
On the other hand, proximity between municipalities within
the same group can be observed, forming subgroups. G5
subgroups can be found in Piauí and Maranhão. G1 is another
example, with a subgroup that goes from the south to the
southeast of Tocantins and extends to Bahia, Maranhão and
Piauí. Finally, there is a G4 subgroup in Bahia.

In Fig 3b, we visualize the global and local univariate spatial
autocorrelation for each sector, based on the Moran’s I Index.
For Agriculture, low-emission municipalities can be observed
clustered with low-emission municipalities. Furthermore, var-
ious agglomerations of municipalities with a large percentage
of emissions by Agriculture may be seen. When compared
with Figure 3a, we identified that this high-high correlation
corresponds with agglomerations of municipalities in G4 and
G2, whose emissions are predominantly from Agriculture.

The high-high connections for LUC are mostly observed in
regions with agglomeration of municipalities in the G1 and G5
groups. We also see the appearance of High-High correlations
in areas where Agriculture had Low-Low correlations. Local
autocorrelations related with Waste do not correlate with the
existence of municipalities of specific groups, and they are
mostly of the Low-Low quadrant, which is expected, since
all groups have low emissions by Waste. Finally, few regions
show significant autocorrelation in the Energy sector.

This spatial autocorrelations from the emissions proportion
of Agriculture and LUC can facilitate the optimization of the
economic resources necessary for the implementation of pro-
environmental measures.

D. Emissions Profile

The dispersion plot of emission proportions in relation
to Agriculture, LUC and Energy is shown in Fig. 4. A
negative correlation (r2 = −0.76) exists between the emission
contributions of Agriculture and LUC. Furthermore, when the
municipalities of G3 are excluded, the correlation increases
(r2 = −0.88). This association shows that the cities that
generated the most GHG by LUC also emitted the least by
Agriculture, indicating that these MATOPIBA municipalities
are at different stages of agricultural expansion [7], [12]. The
G5 municipalities would be on the initial stage, with a high
level of native forest suppression and lower agriculture. On the
other hand, Agriculture would already be consolidated in the
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Fig. 3. Spatial distribution and autocorrelation. (a) Spatial distribution of the created groups. (b) Moran’s I significant map for GHG emissions
from each economic sector, the colored regions are defined by the LISA quadrants: HH (High-High), LL (Low-Low), HL (High-Low) and
LH (Low-High).

G4 municipalities, and the majority of the native vegetation
would already be devastated [1], [32]. Thus, groups G1,
G2 and G6 would be in intermediate stages. However, the
validation of this observation lacks verification of this change
in the emission profile over time.

It is crucial to note that the groups G1 and G5 occupy
the majority of MATOPIBA and emit the most per LUC.
Deforestation, the principal emitting activity of LUC (Table1)
is temporal, because the forest resources are limited. Con-
sequently, if effective efforts to reduce deforestation are not
implemented, emissions per LUC will fall in the future due to
a lack of forest to cut.

Fig. 4. Dispersion of absolute emissions for each group. The symbols
in the graph represent the absolute value of total emissions of each
municipality.

Furthermore, after excluding G3 and G6, which had a high
contribution from the Energy sector, the groups that most
emitted GHG were those belonging to the groups with the
largest contribution of emissions due to LUC, as shown in
Fig. 5. Indicating that the reduction of LUC is essential for
the reduction of emissions from MATOPIBA.

Another sector with high GHG emissions is Energy, mainly
represented by G3 and G5. GHG emissions from the Brazilian

Fig. 5. The averages and standard deviations of the total emissions
for each group.

Energy sector were mostly represented by freight transport in
2018 [17]. This scenario can be represent G5, which seems to
be composed of urbanized municipalities such as ‘Barreiras’
on Bahia, ‘Timon’ on Mato Grosso, ‘Teresina’, capital of
Piauí, and ‘Palmas’, capital of Tocantins and the city with
the largest population of MATOPIBA in 2018 according to
SEEG data.

On the other hand, the high contribution of Energy emis-
sions in the G3 group can be better explained through the
concentration of thermoelectric plants existing in some munic-
ipalities of the group, such as ‘Miranda do Norte’ and ‘Santo
Antônio dos Lopes’ of Maranhão state. In ‘Santo Antônio dos
Lopes’ there is a thermoelectric complex that places it among
the Brazilian municipalities with the highest emission of GHG
per energy generation [33]. The high standard deviation of G3,
as shown in Fig 5, is mainly due to this municipality, with
more than 90% of GHG emissions related to Energy, while
the other municipalities had emissions between 45% and 73%.

Therefore, measures to reduce GHG are necessary for the
municipalities of G1 and G5, with a focus on reducing defor-
estation and for G3 with a focus on making improvements in
the energy matrix and implementing practices that contribute
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to the direct removal of GHG, such as use microalgae in
the biofixation of CO2 in thermoelectric power plants [34],
[35]. It should be noted that mitigation measures for GHG are
necessary in all groups and the clusterization proposed in this
study facilitates targeting the sectors to be prioritized.

This study contributes to decision making based on the
magnitude of emissions and the proximity of areas. However,
other factors have to be considered, such as social, economic,
institutional, environmental, and technological aspects [36]
for proposing pro-environmental measures. The impacts of
mitigation measures are context specific, so it is important
to consider each mitigation strategy on a case-by-case basis.

V. CONCLUSION

In this work, an approach based on k-means was presented
to group municipalities according to their GHG emissions
by sector. When applied to the emissions data from the
MATOPIBA municipalities in 2018, the approach identified six
groups with different emission profiles. The main sectors that
differentiated the groups were LUC, Agriculture and Energy.
The wide variation in the contribution to total emissions by
these sectors showed that the MATOPIBA municipalities are in
different stages of deforestation and agricultural exploitation.
In addition, one of the groups identified is composed of
municipalities with the largest contribution of emissions due
to the Energy sector.

Through spatial autocorrelation analysis, the effects of spa-
tial differentiation and agglomeration of municipalities by the
emissions of each economic sector were evidenced. Therefore,
while exposing the complexity of MATOPIBA, the proposed
approach makes it possible to group similar municipalities and
highlight important spatial autocorrelations. This grouping can
facilitate the targeting of GHG reduction policies such as the
ABC+ plan and the PES, helping Brazil to comply with global
warming containment treaties such as the Paris agreement.

The study has two main limitations: (i) emissions were not
divided by economic sub-sectors, requiring data complementa-
tion to gain more conclusive evidence; and (ii) data from 2018
were collected, which may not completely reflect the current
state of the MATOPIBA municipalities. These constraints
can be reduced in future works that take into account the
subsectors of emissions as well as the timeline of emissions
of the municipalities in order to carry out the grouping. It is
worth noting that the proposed approach can be used to assess
the profile of GHG emissions from other regions of the country
due to its capability and practicability.
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ACRONYMS

GTP Global Temperature Change Potential
GWP Global Warming Potential
GHG greenhouse gases
LISA Local Indicators of Spatial Association
LUC Land Use Change
PES Payment for Environmental Services
IPPU Industrial Processes and Product Use
SEEG The Greenhouse Gas Emission and Removal Esti-

mating System
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