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Simplifying VGG-16 for Plant Species Identification
Juan Campos , Arturo Yee , and Ines F. Vega

Abstract—Plant species identification represents an extraordi-
nary challenge for machine learning due to visual interspecies
similarities and large intraspecies variations. Furthermore, re-
search literature reports that plant species identification usually
lacks sufficiently large datasets for training classification models.
In this paper, we address this problem with a model that simplifies
the VGG-16 architecture, the N-VGG model. The idea behind N-
VGG is to reduce experimentally observed overfitting on VGG-
16 by using as few trainable parameters as possible. To do
this, we substitute the flattening layer on the VGG architecture
with a global average pooling layer. This reduces the size of
the feature vector. In addition, we eliminate one of the two
fully-connected layers and use a new hyper-parameter, N, to
indicate the number of nodes on the remaining layer. To show
the robustness of the N-VGG model, we conducted extensive
experimentation. We trained N-VGG on five datasets for plant
species identification. Four of these datasets are publicly available
and have been widely used as benchmarks for plant identification
models. For all datasets, we compare the accuracy of N-VGG to
that of the VGG-16, Inception-v4, and EfficienNet-B3 models.
The experimental results show that the N-VGG model achieved
the best classification performance for all but one datasets,
whereas all the models showed a remarkable performance for
the remaining dataset. This evidence supports our initial idea
that, for plant species classification, some accuracy might be lost
due to overfitting and that having fewer trainable parameters
helps in producing a more robust model.

Index Terms—Convolutional Neural Network, Deep Learning,
Fine-Grained Classification, Plant Species Identification, VGG-16

I. INTRODUCTION

In recent years, deep learning techniques have become quite
popular due to their outstanding success in many image

classification challenges [1] [2] [3]. Contrary to conventional
machine learning techniques, in which features are chosen
manually and extracted through carefully crafted algorithms,
deep learning techniques automatically discover increasingly
higher-level features from data. A convolutional neural net-
work (CNN) is a type of deep learning technique commonly
used for image detection, recognition, and classification.

The VGG-16 architecture is one of the most widely used
CNN architectures for image classification. Generally, the
models based on VGG-16 have obtained good accuracy [4]
[5] [6] [7]. Although it is not the newest architecture, it has
shown to be a powerful feature extractor. In fine-grained image
classification, feature extractors play a key role in the success
of a classification model. This is because the model requires
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that features capture the most distinguishable traits among
different classes while preserving invariant features within
the same class. One of the main reasons that fine-grained
classification is considered challenging is the difficulty for
visually distinguishing classes.

When we build a classification model, the model parameters
are modified during the training phase. The goal is to obtain
the parameter values that allow the model to perform the
classification while minimizing the loss value. Ideally, we
want to train the model using a large number of observations
per class, but this is not easy in practice. Despite the large
availability of data [8], fine-grained classification problems,
such as plant species identification, usually deal with datasets
that have limited data [9]. When the number of instances in
the dataset is small, the model usually overfits. This occurs
because models based on deep learning adjust millions of
parameters to discover the invariant features in the data.
Accessing a large dataset to solve a fine-grained classification
problem is not simple. Therefore, techniques such as transfer
learning are used so that the model does not estimate parameter
values from scratch [4] [10]. This allows the model to use the
parameter values acquired in a source dataset as a starting
point. Generally, a model that uses transfer learning has a
rapid accuracy convergence during the training phase. Another
solution is to reduce the number of parameters in the models
as much as possible [11].

In this paper, we addressed a multi-class classification
problem of plant species with few instances in the dataset.
This problem represents an extraordinary challenge for ma-
chine learning due to high interspecies similarities and high
intraspecies variations in this domain. Our approach is based
on modifying the VGG-16 architecture to reduce the number
of trainable parameters as well as computing resources without
losing accuracy. The proposed modifications are the follow-
ing. First, the flattening layer in the VGG-16 architecture is
replaced by a global average pooling (GAP) layer. Second,
the two fully-connected layers of the VGG-16 architecture are
replaced by a single fully-connected layer. These modifica-
tions reduce the number of trainable parameters from almost
135 million down to approximately 15 million. Our model
incorporates an extra parameter (N ) in order to increase or
decrease the number of neurons in the fully-connected layer.

The rest of this paper is organized as follows. Section II
describes the related work that constitutes the state-of-the-art
for plant species identification using digital images. Section III
presents a detailed description of the proposed model. Section
IV describes the used datasets and computing environment.
Section V describes the results obtained during the experi-
mental evaluation of our proposal. Finally, in Section VI we
present our conclusions and state future research directions.
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II. RELATED WORK

Nowadays, CNNs are one of the most widely used ma-
chine learning techniques in computer vision. CNNs have
been successfully applied to complex tasks such as object
recognition and detection [12] [13] [14] [15]. For instance,
the ImageNet [16], the Pascal Visual Object Classes (VOC)
[17], the Common Objects in Context (COCO) [18], and the
PlantCLEF challenges [19] [20] [21] [22]. The great success
of the AlexNet architecture [23] in the ImageNet challenge in
2012 motivated several research groups in computer vision to
explore deep learning techniques. AlexNet set the foundations
for the development of new CNN architectures such as VGG-
16 [24], VGG-19 [24], Inception [25], ResNet [26], Inception-
ResNet [27], Xception [28], and MobileNetV2 [29], to name
a few.

In 2017, Ghazi [4] used the AlexNet, GoogLeNet, and
VGG-16 architectures to generate classification models for
plant species identification. The authors trained CNN models
both from scratch and using transfer learning. Data augmenta-
tion was also applied based on simple image transforms such
as extracting and scaling random square regions and image
rotations. The authors used transfer learning from a model
trained on the LifeCLEF 2015 dataset that contains 113,205
images that correspond to 1,000 plant species native to France
and neighboring countries. In the experimental stage, models
based on GoogLeNet and VGG-16 achieved better results
than the AlexNet model. The authors reported that VGG-16
achieved the best Top-1 accuracy, with 78.44%. This work
obtained second place in the PlantCLEF 2016 challenge.

In 2018, Sulc [30] used Inception-ResNet-v2 and Inception-
v4 in the ExpertLifeCLEF 2018 plant identification chal-
lenge [22]. The challenge consists of identifying 10,000 plant
species from digital images. The training dataset contains
256,288 images validated by experts and 1.4 million noisy
images. The authors proposed five different solutions to the
challenge. One of the proposed solutions consists of a single
Inception-v4 model that obtained an 83.2% Top-1 accuracy.
The rest of the proposed solutions are ensembles of CNN
models. With an ensemble of 12 CNN models based on
six Inception-ResNet-v2 models and six Inception-v4 models,
the authors finished first in the ExpertLifeCLEF 2018 plant
identification challenge with 88.4% Top-1 accuracy.

Lee [31] proposed the combination of a wide and deep
learning model for plant species identification. The proposed
method combines a linear model and a deep learning model to
consider discrete features simultaneously with image content.
The linear model used metadata such as flowering dates and
geographic coordinates, whereas the deep learning model used
the digital image. The authors created a dataset with 14,746
flower images of 100 Korean plants species. They used the
Inception-v4 as a baseline model, obtaining 71% in Top-1
accuracy. On the other hand, the proposed model obtained
78% in Top-1 accuracy using GPS and date information.

In 2020, Aravin [5] used the AlexNet and VGG-16 architec-
tures for the identification of five diseases affecting eggplants
(Solanum melongena). The authors used transfer learning and
data augmentation to build classification models. Furthermore,

the authors proposed modifications to the AlexNet and VGG-
16 architectures. These modifications focused on increasing
the number of layers in the fully-connected network to enhance
the accuracy of the models. The authors proposed an eggplant
diseases dataset of plant leaves images taken in field conditions
using smartphones. These images were manually segmented
to remove the background. The best model was obtained from
VGG-16 which achieved 96.70% of average Top-1 accuracy.

Saedi and Khosravi [32] in 2020, proposed three customized
architectures based on CNN for precision horticulture prac-
tices. The authors classified six classes of on-branch fruits.
The customized architectures contain two, three, and five con-
volutional layers, respectively. Furthermore, the authors used
the global average pooling layer and the flattening layer in the
architectures to compare the number of trainable parameters of
the models. Using the global average pooling layer, the authors
reported a reduction in the number of trainable parameters
in the first fully-connected layer with respect to architectures
that used the flattening layer. The authors divided the training
into two phases. First, the authors trained model using the
ImageNet 2012 dataset. Second, these customized models
were used as starting points to re-train using the target dataset.
The best results were obtained from the model that uses three
convolutional layers. The authors reported 99.76% in Top-1
accuracy.

Li [6] proposed two classification models for plant diseases
classification. The authors used a modified VGG-16 model
as a feature extractor. They used the output of one of the
first convolutional layers to obtain a 128-dimensional feature
vector. The authors called it a shallow CNN extractor. These
feature vectors served as the input data for the classification
model based on support vector machines (SVM) and random
forest (RF). The proposed classification models were trained
on the Maize, Apple, and Grape datasets. These datasets are
subsets of the Plantvillage [33] dataset. The authors created
balanced versions of each dataset. Each dataset has 2,000
images divided into four classes. In their experimental results,
the authors reported a Macro F-1 score of 0.94 on all datasets.

In 2021, Vizcarra [34] used the AlexNet, VGG-19, ResNet-
101, and DenseNet-201 architectures to classify ten timber-
tree species. The authors used transfer learning to train the
classification models. They introduced the Peruvian Amazon
Forestry dataset that includes 59,441 leaves images from ten
of the most profitable and endangered timber-tree species. The
image background was removed to eliminate texture noise
in the boundary. The results showed that the AlexNet and
VGG-19 models outperformed the ResNet-101 and DenseNet-
201 models. The VGG-19 model obtained the best accuracy,
reaching 96.52% in Top-1 accuracy.

Bisen [35] proposed an automated plant identification model
for identifying plant species using images of their leaves.
In this work, the author used a customized architecture to
reduce overfitting. The customized architecture contains four
convolutional layers and three max-pooling layers. The author
used different sizes for filters in the convolutional layers.
The layer outputs are flattened into a vector form which is
followed by a 128-unit fully-connected layer. The customized
architecture ends on a soft-max layer. During the training
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phase, data augmentation was used. The author used the
Swedish leaf [36] dataset that contains 1,125 leaf images of
15 plant species. For each species, there are 75 images. The
model obtained 97% in Top-1 accuracy.

Dourado-Filho and Calumby [37] performed a comparative
study of multiple models based on CNNs to extract deep
features from images of multi-organ plant observations. The
authors used transfer learning with the InceptionV3, Nas-
NetLarge, ResNet50, ResNet152_V2, VGG-16, and VGG-
19 architectures. A SVM classifier was used to evaluate
the CNNs. The PlantCLEf 2013 dataset [38] was used for
experimentation. This dataset contains 26,077 images of 250
plant species from the French flora. The best SVM model yield
0.82 of Micro-F1.

The aforementioned works use either a single model or an
ensemble of models to address the plant species identification
task. We note that these models need a large number of
parameters. We also note that the proposals that modify archi-
tectures deal only with a low number of classes. Only a few
papers propose simpler models for plant species identification.
In contrast, our approach uses a single model based on a
simplified VGG-16 architecture to increase accuracy while
using as few trainable parameters as possible.

III. DESCRIPTION OF THE PROPOSED CLASSIFICATION
MODEL

Recently, the use of CNNs has increased due to the results
obtained in computer vision challenges. Furthermore, CNNs
have proven their robustness after being tested in different
domains. Our proposal is based on the VGG-16 architecture
because it has shown good performance for plant species
identification.

The VGG-16 architecture contains 13 convolutional layers,
two fully-connected layers, and a soft-max layer. This architec-
ture requires almost 135 million trainable parameters. Despite
the large number of trainable parameters, the network structure
is simple. VGG-16 is divided into a feature extractor and a
classifier. The feature extractor is composed of blocks that
contain 13 convolutional and five pooling layers. These layers
generate an output tensor. This output tensor is processed by
a flattening layer to generate a feature vector of size (25088).
The feature vector is the input to the second part of the
architecture. The classifier is a fully-connected network that
contains 120 million trainable parameters. Our modifications
focus on reducing the number of trainable parameters of the
fully-connected network. A complete description of the model
is presented in the following subsections.

A. VGG-16 Architecture

The input to the VGG-16 is a tensor of order three and size
(224, 224, 3) representing a color image in RGB format. The
output of a convolutional layer is a tensor of order three and
size (h,w, d). The values of height h and width w are the
same as the input tensor, whereas the value of d equals the
number of applied filters in the convolutional layer. A filter is
also a tensor with the same dimensions as the input tensor but
different sizes in h and w. In CNN, a convolution is described

as a mathematical operation that receives an input tensor and
applies a filter to obtain an activation map of the input tensor.
The convolution is performed by sliding a filter over an input
tensor, usually starting in the upper left corner, and moving
the filter through all positions where the filter is fully adjusted
within the limits of the input tensor. The number of filters
on the first convolutional layer of VGG-16 is 64. Thus, the
size of the output tensor is (224, 224, 64). The max-pooling
layers of this architecture use a 2 × 2 filter and a stride of
two. Therefore, the size of the input tensor is reduced by half
along the h and w directions. On the last max-pooling layer,
the value of both h and w is 7. After each max-pooling layer,
the number of filters applied in the convolutional layers is
increased by a factor of two. The last convolutional layer in
this architecture has 512 filters. In consequence, the size of
the final tensor is (7, 7, 512). The flattening layer transforms
the final tensor of order three into a tensor of order one. This
tensor is called the feature vector, which is the input for the
fully-connected network. The two fully-connected layers have
4096 units each. The last layer in the architecture is a soft-
max layer with 1000 units because VGG-16 was created to
identify 1000 classes.

Fig. 1. On the left side is the VGG-16 architecture and on the right side is the
N-VGG architecture. N denotes the number of neurons in the fully-connected
layer and M is the number of classes.

Our proposal is based on a simplified VGG-16 architecture.
This architecture is composed of two parts. We modified the
way of generating the input vector of the fully-connected
network. We also vary the number of neurons in the fully-
connected layer. These modifications significantly reduce the
number of trainable parameters. We named our proposal N-
VGG.

Figure 1 shows a comparison between the VGG-16 and
the N-VGG architectures. In the N-VGG architecture, all the
convolutional blocks from the VGG-16 architecture are used.
In the classifier, we performed the following modifications.

1) A global average pooling layer replaces the flattening
layer. The global average pooling layer is based on
averaging the output of each activation map in the output
tensor. We used the global average pooling layer to
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reduce the number of trainable parameters in the model
in an effort to reduce overfitting. The flattening layer
processes a tensor of size (7, 7, 512) and produces a
feature vector of size (25088). On the other hand, the
global average pooling layer transforms the tensor of
size (7, 7, 512) into a feature vector of size (512).

2) A single fully-connected layer replaces the two fully-
connected layers. We use the parameter N to modify
the number of nodes in this layer and reduce the number
of trainable parameters. In this way, we have a generic
model, that can be trained with different values of the
parameter N .

B. Transfer Learning

Transfer learning is the process of reusing the parameter
values acquired while training a model in a source dataset
and retraining the model in another dataset, called the target.
This process uses the parameter values learned while training
on the first dataset as the baseline for training a model on a
second dataset. Transfer learning can be used in two ways.
The trained VGG-16 model can either be used as a feature
extractor (i.e., by dropping the fully-connected and soft-max
layers), or it can be fine-tuned for improved performance while
classifying a second dataset. When the trained model is used as
a feature extractor, the parameters of the convolutional layers
are frozen. Thus, an input image is processed and a feature
vector is produced at the end of the convolutional blocks. The
feature vector is then used to train the new classifier. On the
other hand, fine-tuning uses the previously trained parameter
values of the model as a starting point, and then the model
is trained on the new target dataset. During this process, all
(complete re-train) or part (partial re-train) of the trainable
parameters can be adjusted. In this work, we used a complete
re-train when transfer learning was applied.

Transfer learning often brings advantages to classification
models. One important advantage is a reduced training time.
A second advantage is better performance of the classification
models because the model parameter values are not estimated
from scratch. Furthermore, transfer learning has proved to have
a positive impact on the models’ performance when there is
not enough data for training [10].

IV. DATASETS DESCRIPTION AND COMPUTING
ENVIRONMENT

We compare the results obtained using the N-VGG model to
those obtained by the VGG-16 model. We used four publicly
available datasets to validate our proposal. In addition, we
created our own dataset with images of the Mexican flora.

A. Datasets

We created a dataset with images of the Mexican flora. This
dataset started as a compilation of plant images that were
later processed to indicate regions of interest. The images
were taken from two different sources. In particular, there are
images taken by expert biologists during field expeditions in
the northwest region of Mexico. These images were comple-
mented with images taken from Naturalista, an online social

Fig. 2. Annotating regions of interest.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 3. Images from the Mexico 120 Flower dataset. (a) Ipomoea purpurea. (b)
Ipomoea tricolor. (c) Ipomoea triloba. (d) Solanum tridynamum. (e) Solanum
hindsianum. (f) Solanum americanum. (g) Caesalpinia cacalaco. (h) Ludwigia
octovalvis.

network for sharing biodiversity information [39]. To focus
the attention of the model, regions of interest were defined
in each image by manually annotating distinctive organs. For
this, we used PitCrop [40], our own image labeling tool. The
annotation process was conducted under the supervision of
experts in plant taxonomy. Some examples of the regions of
interest are shown in Figure 2.

Subsequently, these regions of interest were extracted from
the original images to generate a new image for each region
of interest. This process required a simple Python script for
copying each region of interest from the annotated images
into a new image file (this process is known as cropping).
The resulting images are always squared. We did this in
order to eliminate distortion on the images due to scaling and
resizing since the proposed model uses 224×224 RGB images
(i.e., larger images are always resized). The dataset consists
of 12,000 m × m color images of plant species from the
Mexican flora. These images correspond to 120 plant species.
The images contain background, angles, lighting, contrast, and
scale variations. Some examples of images in this dataset are
shown in Figure 3. In the particular case of this paper, only
images of flowers were used. We will refer to this dataset as
the Mexico 120 Flower dataset for the rest of this paper.

In addition, we also used the Flavia [41] dataset. This
is a well-known dataset containing 1,907 images of leaves
corresponding to 32 plant species. All images have white
background and have the same size of of 1600× 1200 pixels.
The number of images per species varies between 50 and 77.
Figure 4 (a) shows an image from the Flavia dataset. We did
not perform any preprocessing on the images in this dataset.

The Swedish leaf [36] dataset contains leaf images of 15
plant species. There are 75 images for each species and a



2334 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 11, NOVEMBER 2022

(a) (b) (c) (d)
Fig. 4. In our experiments, we used four publicly available datasets. These are
examples of the images in (a) Flavia, (b) Swedish leaf, (c) Peruvian Amazon
Forestry, (d) Oxford 102 Flower datasets.

total of 1,125 images in the dataset. Figure 4 (b) shows
an image from this dataset. These images did require some
preprocessing. We transformed the rectangular images into
squared images. For this, we took the larger side of the original
image and created a white square of the same size. We then
superimposed the original image on this white square. The
images that resulted from this transformation constitute the
dataset used in our experiments.

The Peruvian Amazon Forestry dataset [34] is a collection
of 59,441 leaf images of ten timber-tree species collected from
the Allpahuayo-Mishana National Reserve, Peru. For each
species, there are between 4,344 and 7,494 images. The image
examples are dark-background photos taken using six different
commercial cameras. Figure 4 (c) shows an image from this
dataset. We did not perform any preprocessing on the images
in this dataset.

The Oxford 102 Flower [42] dataset contains 8,189 images
of flowers of 102 plant species commonly found in the
United Kingdom. For each species, there are between 40 and
258 images. These images have large scale, pose, and light
variations. Figure 3 (d) shows an image from the Oxford 102
Flower dataset. We noticed that the flowers in the images
are centered in most cases. We preprocessed this dataset by
cropping, from the original image, the largest inscribed square.
The resulting images were used in our experiments.

Table I shows the details of the datasets used for this work.
We indicate the distinctive organ used for identification, the
number of classes, and the total number of images for each
dataset. We have also added a column indicating the number
of images per class.

TABLE I
DETAILS OF THE DATASETS USED FOR EXPERIMENTS.

Dataset Distinctive
Organ Classes Images Images

per class
Peruvian Amazon Leaf 10 59,441 4,344 - 7,494
Swedish Leaf Leaf 15 1,125 75
Flavia Leaf 32 1,907 50 - 77
Oxford 102 Flower Flower 102 8,149 40 - 258
Mexico 120 Flower Flower 120 12,000 100

B. Computing Environment

All the experiments reported in this work were conducted
on a PC Workstation with the following specifications. An
Intel Xeon W-2133 processor with 32 GB of RAM and an
NVIDIA GTX 1080 Graphics Processing Card with 8 GB of
memory. The operating system was Linux Ubuntu 18.04. The

software libraries controlling the GPU were provided by the
CUDA toolkit 10.0. We used Python 3.6 and Keras 2.2.4 with
Tensorflow 1.13.1 as backend to train the deep convolutional
neural network architectures.

We used the stochastic gradient descent training algorithm
with a learning rate of 1 × 10−4 and momentum of 0.9. We
used a batch size of 16 and let the algorithm iterate for 20
epochs. As the loss function we used categorical cross-entropy.
We used 10-fold cross-validation to ensure that the models
were properly evaluated. The Top-K accuracy was used as
an index to compare the performance of the models in our
experiments. The Top-K accuracy refers to the percentage of
correct responses in the set of the K highest-ranked responses
provided by the model.

V. EXPERIMENTAL EVALUATION

We used the VGG-16 architecture as a benchmark to eval-
uate our proposed model. For the architecture we propose, we
experimented with several values of N , the number of nodes in
the fully-connected layer. This is a hyper-parameter that allows
us to fine-tune the model. The following values of N were used
{8, 16, 32, 64, 128, 256, and 512}. In all cases, we performed
a complete fine-tuning during the training phase, starting with
the parameter values from a VGG-16 model that was trained
on the ImageNet 2012 dataset. We also compare our model to
the Inception-v4 and the EfficientNet architectures. Inception-
v4 has been successfully used before on similar plant species
identification tasks [22] [30] [31], whereas EfficientNet is an
architecture proposed to study the effects of scalability on deep
convolutional networks [43], which is related to what we do
with the hyper-parameter N . For both architectures we did
a complete fine-tuning starting from models trained on the
ImageNet 2012 dataset.

A. Comparison between VGG-16 and N-VGG

The evolution of the Top-1 accuracy of three models as they
are being trained on the Mexico 120 Flower dataset is shown
in Figure 5. We observe that this model is overfitting. This is
inferred from the plot since the Top-1 accuracy in the training
set (the red curve) reached 100% while the Top-1 accuracy in
the validation set (the blue curve) just reached 83.58%. There
is a large gap between the two curves, suggesting overfitting.
We acknowledge that this model has too many parameters and
hypothesize that this is the source of the overfitting problem.
Therefore, by reducing the number of trainable parameters,
we should minimize the overfitting and, in consequence, train
a model with better Top-1 accuracy. One way to achieve this
on the VGG-16 architecture is by adding a dropout layer after
the flattening layer [44]. This randomly eliminates elements of
the feature vector, which reduces the number of input nodes
on the fully-connected layer and, in consequence, the number
of trainable parameters on the model. Figure 5 (b) shows the
Top-1 accuracy of the VGG-16 model using a dropout layer.
We should point out that this model took longer to converge
than both VGG-16 and N -VGG. Therefore, we increased the
number of training epochs to 40. In the experiments, we used a
dropout rate of 0.5. This reduces the total number of trainable
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(a) VGG-16 (b) VGG-16 with dropout (c) N-VGG
Fig. 5. Comparison of model accuracies during the training phase using the Mexico 120 Flower dataset. (a) VGG-16. (b) VGG-16 with dropout. (c) N-VGG
with N = 512.

parameters from almost 135 million down to 84 million. We
note that the gap between the two Top-1 accuracy curves
is smaller than the gap between the curves of the VGG-16
model. This model reached 89.32% Top-1 accuracy. While
these results are considerable better, and provide evidence to
support our hypothesis, the number of trainable parameters is
still quite large when compared to our proposal.

The observed Top-1 accuracy for the N-VGG models for
N = {256, 128, 64, 32, 16} was similar to the Top-1 accuracy
for the 512-VGG model shown in Figure 5 (c). We chose
not to show their plots as they are redundant. The 512-VGG
model showed the smallest gap between training and validation
curves. Furthermore, this model had the best Top-1 accuracy
during the validation of the training phase.
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Fig. 6. Top-1 accuracy for N-VGG and VGG-16 models using the Mexico
120 Flower dataset.

The performance evaluation of the resulting models is
shown in Figure 6. The best performance was obtained by the
512-VGG model, reaching 91.92% for Top-1 accuracy. Fur-
thermore, six of the seven N-VGG models we experimented
with obtained better Top-1 accuracy than the VGG-16 model,
which obtained 82.21%. The VGG-16 model with a dropout
layer obtained a Top-1 accuracy of 89.32%, outperforming
the plain VGG-16 model and only the two smallest N-VGG
models. Our experiments showed that for N values between 32
and 512, the N-VGG model performs better than both the plain
VGG-16 and the VGG-16 with dropout models. As indicated
in Table II, we should note that all of the N -VGG models
have only approximately 15 million trainable parameters. This

is evidence that having fewer trainable parameters helps in
reducing overfitting and produces more robust models. These
results also show that too few parameters can have a negative
impact on the Top-1 accuracy of the model. Such is the case
of the performance of 8-VGG.

In Table II, we show the total number of trainable parame-
ters for all the models used in our experiments. We also include
each model’s Top-1 and Top-5 accuracies using the Mexico
120 Flower dataset. The first row of Table II summarizes the
information of the VGG-16 model. The rest of the rows report
the information of the N-VGG model using different values of
N . Our proposal reduces the number of trainable parameters
from almost 135 million down to 14 - 15 million. We reason
that using a single layer in the fully-connected network with a
reduced number of nodes (between 8 and 512) produces more
accurate models due to less overfitting.

B. N-VGG Models’ Performance on other Plant Species Iden-
tification Datasets

To evaluate the robustness of our proposal, we also trained
models using the Peruvian Amazon Forestry [34], Swedish
leaf [36], Flavia [41], and Oxford 102 Flower [42] datasets.
We used the same experimental setup described in Section
IV-B.

Table III shows the performance evaluation when models
were trained using all datasets. In this case, we show the
results for VGG-16, N -VGG, and VGG-16 with a dropout
layer. For the Peruvian Amazon Forestry dataset, we observed
exceptional accuracy for all the models, whereas for the
Swedish leaf and Flavia datasets, N -VGG was slightly better
than both VGG-16 and VGG-16 with dropout. For both the
Oxford 102 Flower and the Mexico 120 Flower datasets, the
best performance was obtained by the 512-VGG.

There are almost 135 million of trainable parameters in the
VGG-16 architecture, and 84 million when a dropout layer is
used. Our proposal, the N-VGG model, requires significantly
less, between 14 to 15 million, trainable parameters for 8 ≤
N ≤ 512. Our experiments show that this significant reduction
in the number of trainable parameters has no negative impact
on the Top-1 accuracy of the model for all datasets used in
our experiments.

C. Comparison to other CNN Architectures

To further validate our proposal, we compared N-VGG to
Inception-v4 and EfficientNet. These two models have fewer
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TABLE II
COMPARISON OF THE VGG-16 MODEL AND THE N-VGG MODELS, WITH RESPECT TO THE NUMBER OF TRAINABLE PARAMETERS AND ACCURACY.

Model Convolutional
Layers

Fully-connected
Layers

Soft-max
Layer Total Accuracy (%)

Top-1 Top-5
VGG-16 14,714,688 119,545,856 491,640 134,752,184 82.21 95.62
512-VGG 14,714,688 262,656 61,560 15,038,904 91.92 98.65
256-VGG 14,714,688 131,328 30,840 14,876,856 91.51 97.55
128-VGG 14,714,688 65,664 15,480 14,795,832 91.17 98.27
64-VGG 14,714,688 32,832 7,800 14,755,320 90.54 97.37
32-VGG 14,714,688 16,416 3,960 14,733,744 89.62 97.14
16-VGG 14,714,688 8,208 2,040 14,724,936 85.21 94.32
8-VGG 14,714,688 4,104 1,080 14,719,872 79.79 91.65

TABLE III
COMPARISON OF Top-1 ACCURACY OF THE N-VGG, VGG-16, AND VGG-16 WITH DROPOUT MODELS. THE NUMBER OF TRAINABLE PARAMETERS HAS

BEEN ROUNDED TO THE NEAREST MILLION.

Model Number of trainable
parameters (millions)

Peruvian
Amazon Forestry

Swedish
leaf Flavia Oxford

102 Flower
Mexico

120 Flower
VGG-16 135 99.56 99.36 98.27 78.38 82.21
VGG-16 with dropout 84 99.76 98.68 98.01 84.86 89.32
512-VGG 15 99.69 99.55 99.14 92.31 91.92
256-VGG 15 99.72 99.47 99.16 91.86 91.51
128-VGG 15 99.70 99.62 99.21 91.17 91.17
64-VGG 15 99.70 99.29 99.20 90.51 90.54
32-VGG 15 99.68 98.62 98.79 89.60 89.62
16-VGG 15 99.68 98.94 88.24 85.99 85.21
8-VGG 15 99.62 85.77 82.42 77.06 79.79

trainable parameters than VGG-16. EfficientNet is a scalable
architecture and several scale factors were proposed by its
authors. In our case, we use the scale factor known as B3, since
it produces an architecture similar in size (with respect to the
number of trainable parameters) to our proposal. The resulting
architecture is known as EfficientNet-B3. It has 12 million
trainable parameters and its input is a color image of size 300×
300. To train the Inception-v4 and EfficientNet-B3 models, we
used the same experimental setup described in Section IV-B.
During our experiments, we found out that EfficientNet-B3
converges slower than Inception-v4. Therefore, we increased
the number of epochs from 20 to 40.

Table IV shows the Top-1 accuracies of the models eval-
uated on the Peruvian, Swedish leaf, Flavia, Oxford 102
Flower, and Mexico 120 Flower datasets. In this case, we are
only using 128, 256, and 512 as values for N , since they
produced the most accurate results. We observed excellent
performance by all the models on the leaf-based datasets (e.g.,
Peruvian, Swedish, and Flavia). These datasets are relatively
simple, with a small number of classes and images taken under
controlled conditions. In summary, classifying flat leaves is not
a challenging problem for CNNs.

From the experimental results, it seems that the real chal-
lenge is on classifying the flower-based datasets. These two
datasets have a considerably larger number of classes. In
addition, images were taken under field conditions, with wide
variations on backgrounds, lighting, perspective, and scale. On
these two datasets, the 512-VGG model produced the highest
accuracy, followed closely by EfficientNet-B3. It is worth
noting that VGG-16 with dropout achieved a higher perfor-
mance than the plain VGG-16 model. Also, while Inception-
v4 performed better than VGG-16 on these datasets, it was

surpassed by both EfficientNet-B3 and N -VGG. These results
support our idea that a reduction on the number of trainable
parameters yields better models as it prevents overfitting.

VI. CONCLUSION

In this work, we proposed a modification to the VGG-16
architecture to address a plant species identification problem.
The proposal is based on the simplification of the VGG-
16 architecture to enhance the accuracy of the models. We
proposed a simplification because the VGG-16 model showed
overfitting due its the large number of trainable parameters.
We hypothesize that, by reducing the number of parameters
we can reduce the overfitting and, in consequence, generate a
robust model with better precision. We named our proposal
N-VGG. To provide evidence that our proposal is robust,
we experimented with five datasets; four publicly available
datasets and widely used as benchmarks for plant species
identification, and our own Mexico 120 Flower dataset.

In the experimental results, we noticed some peculiarities.
The models that were trained using the leaf-based datasets
(e.g., Peruvian, Swedish, and Flavia) had accuracy values
over 99%. We identify the following three reasons for this
behavior. First, the three datasets contain only leaf images
that were taken under controlled conditions. Second, the leaf is
always in the same perspective on the image and with uniform
background. Third, the number of classes in these datasets is
small compared to the flower-based datasets (e.g., Oxford 102
and Mexico 120).

For the models that were trained using the flower-based
datasets, we observed a lower accuracy than the accuracy
observed for the leaf-based datasets. This behavior can be
explained as follows. These datasets have a significantly



CAMPOS et al.: SIMPLIFYING VGG-16 FOR PLANT SPECIES IDENTIFICATION 2337

TABLE IV
COMPARISON OF Top-1 ACCURACY OF THE N-VGG, INCEPTION-V4, AND EFFICIENTNET-B3 MODELS.

Model Number of trainable
parameters (millions)

Peruvian
Amazon Forestry

Swedish
leaf Flavia Oxford

102 Flower
Mexico

120 Flower
Inception-v4 41 93.34 95.09 98.62 87.15 86.96
EfficientNet-B3 12 99.78 98.75 98.42 90.11 91.56
512-VGG 15 99.69 99.55 99.14 92.31 91.92
256-VGG 15 99.72 99.47 99.16 91.86 91.51
128-VGG 15 99.70 99.62 99.21 91.17 91.17

Fig. 7. Images of Bidens odorata taken from the Mexico 120 Flower dataset.
There are large variations in background, perspective, illumination, and shape
of the flowers, making its classification an extraordinary challenge.

larger number of classes than the leaf-based datasets. In
addition, the images in these datasets correspond to flowers
(a three-dimensional organ), and they were taken under field
conditions, which implies large variations of background,
perspective, lighting, contrast, and scale. We acknowledge that
these conditions negatively affect the feature learning process
of the convolutional networks and, consequently, degrade their
accuracy. To illustrate how challenging the task of classifying
images of flowers taken under field condition can be, we
present Figure 7. In this figure we include five images of
Bidens odorata. While all images correspond to flowers of
this plant, the background, focus, perspective, and even the
shape of the flowers vary drastically from image to image.
Furthermore, the Mexico 120 Flower dataset presents high
interspecies similarities and high intraspecies variations, thus
making its identification an extraordinary challenge for deep
learning models, where fine details make the difference be-
tween one species and another, while at the same time, there
are significant differences between individuals of the same
species.

Our experiments show that the N-VGG model can compete
with models based on more recent architectures such as the
Inception-v4 and EfficientNet-B3 models. Our results also
provide evidence suggesting that simple architectures such
as N -VGG, EfficentNet, or even VGG-16 with dropout can
train robust models. Overall, we provide extensive empirical
evidence indicating that a simple and efficient model could
effectively address a fine-grained classification problem such
as the plant species identification task.

For future work we intend to evaluate the accuracy of N-
VGG when the number of classes increases. Furthermore, we
would like to evaluate the effect of transfer learning from
different domains on the accuracy of the models.
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