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Fast Crack Segmentation with Depth-to-Space
Operator for Pavement Maintenance

Uriel Escalona, Erik Zamora*

Abstract—The quality of a city’s infrastructure drives socioe-
conomic development. Specifically, it is important to streamline
pavement quality monitoring to improve transportation. How-
ever, crack segmentation is a computational challenging problem
that requires a fast response. In this paper, we propose a Fully
Convolutional Network (FCN) for pavement crack segmentation
using depth-to-space operation in the decoder and direct con-
nections between the encoder and decoder layers to improve
segmentation performance. This approach reduces the number
of layers in the decoder. Consequently, training and inference
computational costs are reduced. We tested our model on public
datasets for comparison with fast state-of-the-art methods. Our
model yielded better performance with lower computational
costs, reaching real-time segmentation at the rate of 11 frames-
per-second. Besides, we introduce a new dataset called CrackIPN
as a benchmark that has four times more images and greater
image diversity than commonly used datasets.

Index Terms—Convolutional neural network, Depth-to-space
operator, Pavement crack segmentation

I. INTRODUCTION

racks are narrow spaces on the surface of pavements,
C along which the pavement has split without breaking into
separate parts. They are formed by natural wear or traffic load,
and are one of the most common stress factors occurring in
pavements. Cracks allow moisture to penetrate into the base
material, which can cause premature failure of the pavement
structure. Therefore, their fast and reliable detection is neces-
sary to ensure consistent pavement maintenance activities.
Automatic crack segmentation still remains a challenge due
to texture variety, light changes and different types of noise,
such as shadows, vegetation, oil and water spots, which can
be confused with cracks. Traditional approaches for crack
detection are manual-labor intensive, slow and insecure [1]—
[3]. The development of new algorithms has allowed to
propose several solutions for this task. Early approaches uses
simply a threshold value to classify pixels [4], [5], or uses an
edge detection [6]. The main disadvantage of these methods
is that they depend strongly on the illumination context.
Segmentation solutions have improved in recent times, [7]-
[14] following the development of deep learning models. Pave-
ment crack segmentation models, in particular [15]-[27], have
shown significant improvement compared with the previously
mentioned approaches. In [28], there is a great review of the
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state-of-the-art techniques for pavement recognition including
image classification, detection and segmentation.

Recent convolutional neural segmentation models follow
a general encoder—decoder architecture [8], [9], [29]-[33],
where the encoder extracts relevant features from the input
data by drastically reducing dimensions, and the decoder
approximates the segmentation map based on these encoded
features.

One of the main problems of using deep learning techniques
is that the deeper the model, the slower the inference process
[34]. This makes them difficult to use in real situations where
results are required to be obtained in a short time such as in
applications on mobile robots and cars.

In this paper, we challenge the basic assumption that the
decoder part of most used models should have the mirror
architecture of the encoder, resulting in the same number
of layers and a similar number of learning parameters. We
replace the conventional up-sampling operation in deconvolu-
tional layers with a depth-to-space rearrangement which was
proposed for image super-resolution [35]. We show that our
proposed architecture needs less computation to learn the same
task. At the same time, processing time is reduced, achieving
real-time segmentation.

The main contributions of this research are the following:

1) We propose a new fast neural model based on depth-
to-space operator for pavement crack segmentation. We
evaluate our proposal in terms of processing time, noise
and angle robustness in real environments.

2) We introduce a new challenging dataset with 400 images
and manual pixel-level segmentation.

This paper is organized as follows: Section 2 presents a
brief description of the related work. Section 3 describes our
convolutional neural model that includes the depth-to-space
operator. Section 4 shows the experimental results to analyze
the performance of our approach and to compare it with state-
of-the-art solutions. We use two well-known datasets [15], [16]
facilitating this comparison and present CrackIPN dataset as
a benchmark for crack segmentation. Section 5 contains the
conclusions and suggestions for future work.

II. RELATED WORK

This section provided a brief explanation of related methods
that detect and segment cracks in pavements. Where the main
aspects that we seek to compare is the processing time and its
accuracy.

Chatterjee and Tsai [36] provided a method based on four
steps: 1) a preprocessing step via median filtering to reduce


https://orcid.org/0000-0002-3682-8585
https://orcid.org/0000-0002-0521-4898

2208 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 10, OCTOBER 2022
TABLE I
CRACK PAVEMENT SEGMENTATION-RELATED WORK.
Name Year. ?f Methodology Proc.essmg Input 11‘1'1ag('3 Hardware
publish time dimensions
AMD FX(tm)-4300 Quad-Core
CrackForest [15] 2016 Random structured forests 0.532 s 320%x480 CPU. 4GB RAM
Intel Xeon E5-2690 2.9 GHz
Fan et al. [16] 2018 Deep neural networks 0.380 s 320%x480 CPU, 64GB RAM and Nvidia
Quadro k5000 GPU
Chatterjee and 2018 Median filtering, classification algorithm 155 20%20 Intel Core i7-4770 CPU 8 cores
Tsa [36] and minimal path-based algorithm ’ 3.40GHz
Escalona et al. Intel-i17-2600 CPU, 8 GB RAM,
[29] 2019 Autoencoder neural networks 0.066 s 320x480 GTX 980i GPU
Zou et al. [37] 2019 Encoder-decoder neural network 0.153 s 512x512 GTX TITAN-X GPU
Liu et al. [24] 2019 Deep neural network 0.1s 544 x384 NVIDIA TITAN X
Kang et al. [38] 2020 Faster R-CNN, TuFF and DTM algorithm 4s 100 100 Intel Core g;;o{gﬁQ CPU, 16
Encoder-decoder neural network and Intel 8700 k CPU, 32 GB RAM,
ConnCrack [26] 2020 WGAN 1.56 s 256%x256 NVIDIA Titan V GPU
Peng et al. [39] 2020 Random structured forest - 320%x480 Intel Core lsleSlg[O CPU, 8GB
Kalfarisi et al. . . . Intel Core i9-7920C CPU,
[40] 2020 FRCNN with SRFED and Mask RCNN 05sto8s - NVIDIA GV100 GPU
Densely connected and deeply supervised Intel Core i7-8700 CPU, 64 GB
Li et al. [41] 2021 y Ply sup 0251006 s - RAM, 11GB GeForce GTX 1080
network X
Ti GPU
M"‘heag;] et al. 2021 Parallel CNNs with attention mechanism - 227x2p7  Imel Core 14570 CPU, 16.GB
Super-resolution and semi-supervised Intel Xeon 6226R 2.9 GHz, 320
Shim et al. [43] 2022 per-Tes Supervis - 256x256 Gb RAM, NVIDIA Quadro 8000

learning method

GPU

noise, 2) the use of a classification algorithm to obtain a
preliminary crack segmentation result, 3) the generation of
crack objects to connect the disjoint crack segments and to
remove noise, and finally 4) the use of a minimal path-
based algorithm to detect the final crack pattern. This method
achieves an overall score of 80% with an average time of 1.15
seconds per image, highly dependent on crack complexity.

Shi et al. [15] (CrackForest) employed random structured
forests to automatically detect cracks. CrackForest starts by
computing a great quantity of features from the training image
patches, to describe the tokens (segmentation masks). The
second step is clustering the formed tokens by using random
structured forest in order to form a crack detector gathering
32640 features. To reduce the vector dimensionality, 256
features are randomly chosen to train each split function and
then apply PCA (Principal Component Analysis) to reduce
from 256 to five dimensions. Then, dilation and erosion
operations are performed to connect different cracks in the
image. Lastly, classification methods such as SVM (Support
Vector Machine) and kNN (k-Nearest Neighbor) are applied
to distinguish cracked pixels from noises. This technique is
more complex because it involves several procedures where
human expertise is required.

[39] use a random structured forest to scan pavement
images looking for cracks, where this process detects and
segments cracks in patches to construct a full segmentation
map. Peng et al. demonstrate that a random structured forest
can correctly identify cracks on pavements across different
environments. Nonetheless, identifying the position of cracks
remains a challenge, with the method reaching a 95.95% F1-
score with a 5-pixel tolerance, which decreases to 83.05% if

a 2-pixel tolerance is used.

Fan et al. [16] used a convolutional neural network with
structured prediction for automatic pavement crack detection.
The network has nine layers: four convolutionals, two max-
pooling and three fully connected. The proposed architecture
extracts patches from the original images to analyze pixel
per pixel individually. The network determines if the pixel
is a crack or non-crack pixel by forming a probability map
in the network output. Despite the proposed methodology
being very robust, effective and a slight improvement on
the performance achieved by Shi et al. [15], it consumes
substantial computational resources and time because it makes
a sweep of all the pixels by creating a patch per pixel of the
image.

[24] present a deep learning architecture based on convo-
lutional layers from VGG16 [44], with side-output layers and
a module of refining to produce a probability map from crack
images. An F-1 score of 0.86 is reported over their proposed
dataset, with an inference time close to 0.1 s.

[38] propose an automatic crack detection, localization
and quantification method, using a faster region proposal
convolutional neural network (Faster R-CNN) to detect cracks
with a 95% average precision, a tubularity flow field (TuFF) to
segment (83% intersection over union) and a modified DTM
algorithm to measure the thickness with an accuracy of 93%
with a 2.6 pixel root mean square error. Using a combination of
these three methods, Kang et al are able to detect cracks even
in high noise surfaces that present more components easily
misinterpreted, such as windows, doors and home appliances.
However, this method involves high computational cost, with a
segmentation time of 4 seconds for a 100 x 100 pixel bounding
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box.

In [40] two deep learning-based approaches are developed
for crack detection and segmentation. The first approach inte-
grates a faster region-based convolutional neural network (FR-
CNN) with structured random forest edge detection (SRFED).
Where FRCNN detects cracks with bounding boxes while
SRFED segment the cracks within the boxes. The second
approach applies Mask RCNN for crack detection and segmen-
tation. Both models are trained with real images taken from
real-world infrastructure inspections. The metric intersection-
over-union is used to evaluate the segmentation performance,
with a maximum of 0.54 intersection-over-union mean, with
a processing time from 0.5 seconds up to 8 seconds highly
dependent on the number of cracks per image. Crack pavement
segmentation is presented, nevertheless, there is no ground
truth of the whereabouts of the cracks available and so forth
metrics evaluation is not presented.

In [29], three different convolutional neural networks are
proposed to segment pavement cracks; these networks are
based on U-Net with an encoder—decoder architecture. This
proposal shows an improvement from previous models such
as CrackForest, Canny and VGG16. However, this approach
considers as true positive pixels, those pixels which are no
more than five pixels away from ground truth. Recent methods
reduce this tolerance using only two pixels.

In [37], Zou et al. propose a deep convolutional network
in an encoder—decoder architecture named DeepCrack with
connections from encoder to decoder features based on SegNet
[9]. This architecture demonstrates a significant improvement
compared to low level feature based methods and similarly to
previous deep models. Although this architecture produces a
0.87 Fl-score, it still retains one of the main disadvantages of
very deep models, which is the long processing time, being
0.153 second (6 frames-per-second).

[26] present ConnCrack, a combination of an encoder—
decoder neural network with Wassestein generative adversarial
network to produce segmented images. This network consists
of a 121-layer densely connected neural network as a generator
and a 5-layer fully convolutional network as a discriminator.
After training the generator, this produces segmented images
from the pavement images input, with a precision of 96.79%,
a recall of 87.75% and an F-1 score of 91.86%. These metrics
are measured with a 5-pixel tolerance, which in recent research
projects has been deprecated and changed for only a 2-pixel
tolerance. ConnCrack has a large number of hyperparameters,
and consequently, producing a segmented image takes more
than 1.56 seconds.

Table I presents a summary from related state-of-the-art
works on crack pavement segmentation, considering different
machine learning techniques. This table presents the year of
publication, image processing time, proposed methodology,
input image dimensions and hardware characteristics.

On the other hand, the depth-to-space operation has been
used in [45], replacing each deconvolutional layer, but this
approach does not significantly reduce computational cost.
In [46], depth-to-space operation is used as a single block
to replace a stack of convolutional layers, but accuracy is
slightly decreased. In contrast, we propose employing a single
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Fig. 1. Model for pavement crack segmentation with the depth-to-space op-
erator for reducing the number of learning parameters. (a) Data augmentation
process for training, (b) Convolutional neural network with Depth-to-space
operator and (c) Post-processing method to eliminate false positives.

depth-to-space block to reorder feature maps and convolutional
blocks to achieve pavement crack segmentation without loss
of accuracy. On the other hand, the most recent works have
explored new and interesting approaches to improve crack
segmentation: parallel CNNs with attention mechanisms [42],
super-resolution networks [43] and densely connected and
deeply supervised networks [41]. None of them have proposed
to include the depth-to-space operator.

III. FCN wiTH DEPTH-TO-SPACE OPERATOR

As shown in Fig. 1 (b), our neural model consists of three
major parts: 1) the encoder extracts features with convolutional
and pooling layers to obtain a representation of the input
image; 2) the decoder constructs a segmentation output based
on these extracted features, resizing its tensor with depth-to-
space operator and convolutional layers; and 3) there is a direct
connection from the second layer output in the encoder to the
ninth layer input in the decoder to include feature maps from
early layers.

We give below more details:

Encoder. The input image with size 320 x 480 x 3 is passed
through two convolutional layers and one pooling layer to
obtain a tensor of 160 x 240 x 64, then processed by a second
block of two convolutional and one pooling layers to result
in 80 x 120 x 256 tensor size. These processes reduce height
and width of the feature maps by a factor of 4. Finally, two
convolutional layers result in the data presented to the decoder.

Decoder. These feature maps resulting from the encoder
represent the information used to segment pavement cracks,
but they need to be resized to make the predictions. Com-
monly, the decoder has a similar number of learning pa-
rameters, units and layers as the encoder in most current
segmentation methods with FCNs [8], [9], because its purpose
is to reverse the process of the encoder based on deconvolu-
tional layers. This implies that the total computational cost for
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Fig. 2. Depth-to-space operator example. Convolutional block can increase
height and width in a single step, reducing depth

inference is almost twice the processing time of the encoder
alone. To reduce the computational cost, we propose an FCN
where the decoder part contains a depth-to-space operator,
reducing the number of layers from six to four in the decoder.

Depth-to-space operation was originally proposed in im-
age super-resolution task [35], where it showed that it can
transform low-resolution images to high-resolution images
speedily and with low complexity. This operation changes
the dimensions of a tensor input, reordering the feature maps
without modifying their values. According to the following
equations

DPT(L)I,%C = L[z/rJ,Ly/rj,C~r<mod(y,r)+C-mod(z,T)Jrc (1)

In the case of our model, this operator is applied to
the last convolutional layer of the encoder, transforming the
dimensions of the output volume. Where H, W, C' represent
height, width, and number of channels respectively and r € N
is the channel reduction factor. We set r = 4 for the tensor
80 x 120 x 256, so the depth-to-space operator gives a tensor
with a input-size height and width. Note that we obtain same
spatial dimension as in the input image in a single fast step
without deconvolutional layers. Fig. 2 shows the process of
use of depth-to-space operator with a factor of 2 to rearrange
a convolutional block to a one-channel block in a single step.

The three convolutional layers are necessary to extract
more features and compensate for the learnable parameters
required to interpret the output volume from the depth-to-space
operator. The last convolutional layer predicts segmentation
based on them without unpooling layers.

Direct connection. The layers of pooling can result in loss
of information affecting segmented areas, making them thinner
or erasing them. To prevent this, we connect the output of
second convolution layer with the input of ninth convolution
layer after the depth-to-space operation as a form of spatial
conservation of the information.

For simplicity, in all convolutional layers we use stride
equal to one, the same padding and a fixed kernel size. In
experiments, we tested three different sizes of kernel to deter-
mine the best size based on F1-score to improve segmentation
performance. We also compare max-pooling with average-
pooling because relevant spatial information could be erased
by max-pooling and diluted by average-pooling. A priori it is
not clear which one is better.

IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 10, OCTOBER 2022

IV. EXPERIMENTS

In this section, we evaluate our proposal, providing a brief
description of the experimental setup and training details of
the models as use of different kernel size, pooling layer as
well as postprocessing. We introduce a new dataset as a
benchmark that has more images in different conditions than
the most common state-of-the-art datasets. We discuss results
achieved on the testing sets comparing with fast state-of-
the-art methods. And also, we provide several experiments
to challenge this model under noise conditions, image-taken
angle and pavement texture.

A. Datasets

We decided to use three well-known datasets: CFD [15],
Crack500 [47] and AigleRN [48], which are freely available
and are often employed for comparison. CFD dataset is a
benchmark composed of 118 RGB images and their hand-
made segmentation with 320 x 480 pixel size. These images
reflect urban road surface conditions collected by using an
iPhone 5 in Beijing, China. Each image contains cracked
pavement and some typical perturbations such as water and
oil stains. AigleRN dataset consists of 38 RGB images with
991 x 462 pixel size taken from different cracked pavements
in France with intense crack texture inhomogeneity.

Crack500 is a dataset with 500 pavement pictures of size
3264 x 2448 collected at the Temple University campus by
using a smartphone, where each image is annotated by multi-
ple annotators. This dataset shows a high variety of pavement
texture.

In the literature, most pavement crack segmentation datasets
are non-public. This complicates making a fair comparison
among methods. Furthermore, the number of images in these
datasets is few in comparison with other machine learning
tasks where it is easy to find datasets with a great number of
instances.

Accordingly, we collected a new dataset CrackIPN. This
consists of 400 RGB images of 320 x 480 pixels with cracked
pavement in Mexico City. It contains the most frequent noise
presented in real environment, such as oil stains, shadows,
vegetation and zebra steps, making it more diverse than pre-
vious ones. This dataset presents cracks ranging from simple
forms such as almost linear horizontal cracks to more complex
ones such as intersecting cracks covered with vegetation, and
displays cracks with thickness from 1 pixel to 30 pixels. These
images were taken at a height of 1.5 meters from the ground
with an angle of 90 degrees. The images also have different
illumination conditions due to shadows and sunlight; see Fig.
3. The images were manually segmented pixel by pixel, and
are freely available for research purposes.

Table II presents information about these datasets. With a
ratio of crack pixels per image from 1.61% to 1.78%, these
datasets present almost similar cracks percent per image.

AigleRN contains images with no cracks and which do not
have noise that can be misinterpreted as cracks. However,
CFD, Crack500 and CrackIPN incorporate some disturbances
that make the datasets more challenging.
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TABLE 11
AIGLERN, CFD, CRACK500 AND CRACKIPN SUMMARY.

Images with no Crack pixels per

Dataset Location No. images . Noises
cracks image (mean)
AigleRN France 38 yes 1.78% None
CFD Beijing, China 118 no 1.61% Oil stains, water,
zebra steps
Crack500 USA 500 no 1.58% Oil stains,
shadows
QOil stains, water,
CrackIPN Mex1coA City, 400 o 1.62% zebra steps,
Mexico shadows,
vegetation

AigleRN

(d)---
We show some instances from AigleRN, CFD, Crack500 and
CrackIPN databases to qualitatively evaluate their diversity.

Fig. 3.

B. Experimental setup

Evaluation: We thresholded the model predictions at the
value [ to generate a binary segmentation and to compare it
with the ground. This threshold was chosen based on a grid
search from 0.1 to 0.9. We averaged the F1-scores over images
to evaluate performance and to compare with published works,
where F'1 = 2PR/ (P + R) for an image. The precision P
is calculated by P = TP/ (TP + FP) and the recall R by
R=TP/(TP+ FN), where TP, FP and F'N are the total
number of true positives, false positives and false negatives
for the cracked pavement predictions, respectively. For all
experiments, we consider a positive predicted pixel as a true
positive if there was at least one positive pixel no more than
two pixels away in the corresponding ground true label, as is
proposed in [15]. There is no tolerance for F'P and F'N.

Training: All models are trained with RGB images (320 x

480 pixels) on a single NVIDIA GTX 980 TI and Intel i9-7900
processor. We used Keras [49] as deep learning framework and
Tensorflow [50] as the backend. We fitted the models on the
training data for 300 epochs with an ADAM optimizer [51],
setting an initial learning rate of 0.00001, which was later
reduced based on the training statistics by ADAM. We did not
use a learning rate schedule. The loss function is categorical
cross-entropy. We trained the models using 60% images from
the CFD database (training set) and observed the result on
the remaining 40% CFD (validation set) and on 40% of the
AigleRN database (validation set). AigleRN was not used for
training because it has only 38 images. It is noteworthy that
we could not exactly use the same training and validation
sets as other works [15], [16] because this information is not
available. However, we used a similar proportion of images in
training and validation for comparison purposes. In addition,
we used the models with our own CrackIPN database, taking
300 images for training, 50 images for validation and 50
images for testing. In contrast to other works, note that we
used a validation dataset to tune the hyperparameters by a
grid search, so the testing results do not show overfitting due
to hyperparameters. Furthermore, we provide access to our
own dataset, codes and trained models for future comparisons
[52].

In the experiments, we used data augmentation for training
images and added a post-filtering procedure applied to the
segmentation output. We generate random modified training
images based on two transformations: a 180 degrees rotation
and a vertical flipping (Fig. 1 (a)). Predicted segmentation
presents salt-and-pepper noise which reduces accuracy, so we
deleted positive segmentation pixels which have low density to
reduce the false positive error with a post-filtering procedure
(Fig. 1(c)). Each positive pixel is analyzed according to the
equation:

1oy mo s
G ={ ) Zim g @)
Zi:—n j:—mpi’j <5

Where p € {0,1}, n and m are set to 1, creating a box
area of 3 x 3. Then each positive pixel must have at least five
neighbor positive pixels. Otherwise, this pixel is deleted. This
process cleans background areas without losing true positives
near crack edges.
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C. Results

Table III shows the results of a grid search in terms of the
precision, recall and Fl-score for twelve different models on
the validation sets. The CNN architecture was fixed, and kernel
size [(3,3), (5,5), (7, 7)] and pooling type (max, average) were
varied along with the activation or deactivation of direct con-
nection in layer eight. The results show that the best F1-score
is obtained by the combination of max-pooling and (5,5) kernel
size for CFD database F'1 = 0.8808, and the combination
of average-pooling and (5,5) kernel size for AigleRN dataset
F1 = 0.7577 with the activation of direct connection. We
observe that max-pooling has similar performance to average-
pooling for (5,5) kernel size, so we decided to use max-pooling
with (5,5) kernel size in the following experiments.

We compare our model with fast state-of-the-art methods
with a processing time of less than 1 second and which use
a margin of 2 pixels. All methods are trained on CFD dataset
and tested on both CFD and AigleRN validation datasets, as
shown in Table IV.

We see that the method of Fan et. al [16] has the best
Fl-score on CFD, but a lower score than our model on
AigleRN. Conversely, CrackForest has the best Fl-score on
AigleRN, but a lower score than our model on CFD. For
making a fair comparison, we decided to average the FI1-
scores over these two datasets weighted by their number of
images as follows F'l,,q = (48F1crp + 15F1gigern) /63.
Our model with neither data augmentation (DA) nor post-
filtering (PF) achieves similar performance to CrackForest
and a lower performance than the method of Fan et. al [16].
However, our model with data augmentation and post-filtering
presents the best average Fl-score over both datasets. Note
that CrackForest also uses a post-filtering procedure. On the
other hand, we compare the inference times 7,y among
methods. Our method is executed in 90 ms with PF, while
the others require more than 380 ms. Even with post-filtering,
our proposal is at least five times faster than CrackForest and
four times faster than the method of Fan et al. [16], showing
better segmentation performance.

For the last experiments, we trained, validated and tested
our proposal with our own CrackIPN database. These trained
models were also tested over the testing datasets of CFD
and AigleRN to evaluate the generalization error of crack
segmentation over images with dissimilar conditions to Crack-
IPN. We also evaluated the models to see the effect of
data augmentation and post-filtering on performance metrics.
Table V summarizes the precision, recall and F1-score from
these experiments. We observe that the data augmentation
and post-filtering consistently give an improvement on F1-
scores. So these two procedures are important. The best F1-
score is obtained on CrackIPN dataset and the segmentation
performance decreases on CFD and AigleRN datasets. The
F1-score on the testing set of CrackIPN is 0.9504 for our best
model with data augmentation and post-filtering.

We also present the results of our model trained with
CrackIPN on the test part of the Crack500 dataset [47] as
shown in Fig. 4. In the case of this dataset we observe that
it is composed of pavements with a great variation in texture,
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F1-score: 0.2946

F1-score: 0.9892 F1-score: 0.8807 F1-score: 0.0102

Fig. 4. Results over Crack500 dataset, the first row presents pavement images,
the second row is the original ground truth, and the third row shows the
segmentation with CrackIPN training set.

—e— Precision Recall F1-score

0.95
0.9

Precision, Recall and F1-score

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Noise

Fig. 5. Graph on the precision, recall, and F1-score obtained on the test set
of the CrackIPN database in the presence of random noise.

in this case, our model presents a great variety of results, if
the pavement texture is similar to that presented in CrackIPN,
CFD and AigleRN we obtain an F1-score of 0.9892, otherwise,
if the texture differs greatly, this Fl-score value is reduced to
0.0102. The main reason for the reduction is largely the high
false positive detection since the pavement shows a porous
texture easily identifiable as cracks. With these results we
can conclude that the model presents a high Fl-score if the
pavement texture is similar to the training dataset, but this
value may decrease if the texture differs.

To evaluate the resistance to noise typically found in taking
real images, the CrackIPN database test set was subjected to
different amounts of random noise, being the CrackIPN + DA
with PF model the one that presents a higher Fl-score was
chosen for the experiments. Fig. 5 shows the results of the
experiment as the amount of noise increases. The precision is
less affected by the random noise with respect to the recall,
i.e. the random noise provokes more false negatives than false
positives. The overall effect on F1-score is a decreasing effect,
mainly due to the presence of more false negatives. We observe
that even with a 3% of noise, the Fl-score is higher than 0.85.
This result shows some robustness against random noise which
is naturally generated in the sensor of digital cameras. This is
relevant because different digital cameras generates different
amount of noise depending on illumination conditions.

To observe the variation in the segmentation of the model
according to the angle of the image, the following experiment
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TABLE III

PERFORMANCE SUMMARY IN PAVEMENT CRACKS WITH CFD AS TRAINING SET (3 = 0.7).

Training/testing ~ Pooling  Kernel  Precision Recall Fl-score
Direct connection enabled
CFD/AigleRN  Average (3.3) 0.6830 0.7404 0.7004
CFD/AigleRN  Average (5,5) 0.7275 0.8004 0.7577
CFD/AigleRN  Average (7,7) 0.8553 0.5043 0.6182
CFD/AigleRN Max (3.3) 0.6086 0.7323 0.6459
CFD/AigleRN Max (5.5) 0.7124 0.8258 0.7541
CFD/AigleRN Max (7,7 0.6967 0.5958 0.6347
CFD/CFD Average (3,3) 0.7247 0.6434 0.6671
CFD/CFD Average (5,5) 0.8869 0.8601 0.8674
CFD/CFD Average (1,7) 0.9001 0.8259 0.8521
CFD/CFD Max (3,3) 0.9295 0.7793 0.8357
CFD/CFD Max (5,5) 0.8885 0.8833 0.8808
CFD/CFD Max (7,7) 0.9148 0.8220 0.8587
Direct connection disabled
CFD/AigleRN  Average (3,3) 0.4384 0.9056 0.5777
CFD/AigleRN  Average (5,5) 0.7452 0.6692 0.6945
CFD/AigleRN  Average (7,7) 0.5572 0.5635 0.5541
CFD/AigleRN Max (3,3) 0.4896 0.7773 0.5899
CFD/AigleRN Max (5.5) 0.7634 0.5916 0.6602
CFD/AigleRN Max (7,7 0.6708 0.6651 0.6614
CFD/CFD Average 3.3) 0.8084 0.8217 0.8026
CFD/CFD Average (5.5) 0.8936 0.7274 0.7859
CFD/CFD Average (7,7) 0.8808 0.7860 0.8235
CFD/CFD Max (3.3) 0.8431 0.5575 0.6470
CFD/CFD Max (5,5) 0.9446 0.6677 0.7680
CFD/CFD Max (7,7) 0.8935 0.8393 0.8589
TABLE IV

F1-SCORES AND INFERENCE TIMES FOR THE STATE-OF-THE-ART METHODS IN PAVEMENT CRACK SEGMENTATION DATASETS (8 = 0.7).

Method CFD/CFD  CFD/AigleRN  Flgpg  Ting , sec
Canny 0.4570 0.2881 0.4168 -
Local thresholding 0.7418 0.6670 0.7240 -
CrackForest [15] 0.8571 0.8617 0.8582 0.532
Fan et al. [16] 0.9244 0.7182 0.8753 0.380
Our model 0.8808 0.7577 0.8515 0.070
Our model+DA 0.8836 0.7968 0.8629 0.070
Our model+DA+PF 0.9012 0.8189 0.8816 0.090
TABLE V

PERFORMANCE METRICS FOR SEGMENTATION IN DIFFERENT EXPERIMENTAL SETTINGS (ﬁ = 0.1)

Training/testing database Precision  Recall ~ Fl-score
CrackIPN/AigleRN 0.6756 0.7717 0.7102
(CrackIPN+DA)/AigleRN 0.7454 0.8173 0.7703
(CrackIPN+DA)/AigleRN with PF 0.8425 0.7594 0.7932
CrackIPN/CFD 0.9698 0.6586 0.7462
(CrackIPN+DA)/CFD 0.9603 0.7459 0.8128
(CrackIPN+DA)/CFD with PF 0.9614 0.7626 0.8219
CrackIPN/CrackIPN 0.9282 0.9203 0.9220
(CrackIPN+DA)/CrackIPN 0.9060 0.9650 0.9326
(CrackIPN+DA)/CrackIPN with PF 0.9506 0.9504 0.9504
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Fig. 6. Segmentated frames taken from a video centered on a crack in the
pavement, starting with an angle of 90 degrees gradually reduced to 45.

was carried out. A single crack centered in the image was
recorded in a 5-second video with a 24 fps shot, this video
begins with an angle of 90 degrees and a distance of 1.5
meters to the pavement, this angle is modified until reaching
45 degrees. 30 frames of the video were segmented with the
model trained with CrackIPN, as seen in Fig.6. It is observed
that the crack during all the shots retains its original shape,
slightly reducing the segmented surface as the angle decreases.
With an angle of 90 degrees, the model obtains an F1-score of
0.9417, this value decreases according to the sampling angle
until a value of 0.9266. Although this value is reduced, we can
see that the cracks are still correctly identified and F1-score
only decrease in a 1.51%.

Architecture analysis. We compare the architectural prop-
erties of the encoder and the decoder in our best model with
(5,5) kernel size. Remember that this model incorporates a
depth-to-space operator reducing the number of layers from
six to four in the decoder. As a consequence, the number
of neurons in the decoder is 28.79% of their number in the
encoder, its number of learning parameters is 14.47% of that
in the encoder and its processing time is 11.43% that of the
encoder. See the encoder and decoder properties in Table VI.

Fig. 7 shows the segmentation results of our best models in
images from AigleRN, CFD and CrackIPN validations sets.
The reader can watch a video showing segmentation results in
real-live over a pavement road at the following link [53].

V. CONCLUSION

For pavement crack segmentation in images, we studied an
FCN with its decoder including a depth-to-space operator. We
showed that the use of this operator can reduce processing
time in the decoder, and almost ten percent of the processing
time in the encoder. This is valid for our architecture and
the datasets we used. No deconvolutional layers were used
because this operator resizes the feature maps to the size of
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AigleRN

CFD CrackIPN

Fig. 7. The segmentation results. Row (a) shows instances from AigleRN,
CFD and CrackIPN databases, row (b) presents the original ground truth,
(c) the segmentation obtained with CFD as training set and (d) segmentation
using CrackIPN as training set.

the input image in a single step. Instead, it is necessary to
include convolutional layers after the depth-to-space operation,
and at least a direct connection from the encoder to the
decoder for good segmentation performance. We found that
our model with kernel size (5,5) and max-pooling had the
better segmentation performance. Based on these, the model
achieves a performance similar to CrackForest and a lower
performance than the method of Fan et. al [16]. However, if
we add data augmentation and post-filtering, then our model
surpasses the current state-of-the-art results. Note that this
better performance is obtained through speeding up inference
processing. Pavement crack segmentation is a problem that is
solved manually, which takes a great amount of time. Machine
learning based methods have achieved high percentages of
automatic segmentation but their processing speed is low so
they can only be used in laboratory tests. Our proposal is at
least four times faster than these other methods, helping us
to reach real-time segmentation at the rate of 11.11 frames-
per-second maintaining high performance. On the other hand,
we introduced a new dataset called CrackIPN for crack seg-
mentation as a benchmark. This dataset has almost four times
more images and presents images with more diversity than
previous datasets. These images show cracks on different types
of pavements and under varied illumination conditions, even
with the presence of oil stains, shadows, vegetation and zebra
steps, making them more diverse. Our method can correctly
segment ground truth crack pixels for the testing set of this
database with an F1-score equal to 0.9504.

We are interested in future research to detect other types
of risks in the pavement such as potholes and holes. An
implementation of this work can significantly reduce the
amount of time used to maintain the roads. We could have
safer roads.
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TABLE VI
COMPARISON BETWEEN ENCODER AND DECODER PROPERTIES OF OUR BEST MODEL TO SHOW ITS EFFICIENCY IN THE DECODER PART.
Model properties Encoder Decoder  Dec/Enc %

# Layers 6 4 66.66

# Neurons 896 258 28.79

# Learning parameters 3,718,210 538,114 14.47

Processing time, ms 52.30 5.98 11.43
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