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Abstract— This paper presents the design and statistical 

validation of an In-Vehicle Data Recorder System (IVDR) for 

testing purposes, implementing the use of CAN bus (Controller Area 

Network) communications protocol through the SAE J1962 port. 

The device works according to an interrupt-based algorithm that 

reads the vehicle’s sensor data sent through the CAN bus network. 

This data is stored in an external memory card and sent to a server 

using a General Packet Radio Services (GPRS) module, it can also 

be connected to a computer to view the data in real time. The 

proposed IVDR was thoroughly validated by means of multiple 

experiments, including one in which its performance was 

compared to an industrial use device with similar functions, it has 

also already been used in the development of a Typical Driving 

Cycle (TDC) for the city of Chía in Colombia. Statistical analysis 

shows that the device performs similarly against commercial 

devices and complies with SAE standard guidelines, presenting the 

device as a low-cost and reliable option for testing purposes and 

massively distributed IoT applications. 

 

Index Terms— Automotive communication protocols, CAN bus, 

In-Vehicle Data Recorder, OBDII, Typical Driving Cycles. 

I. INTRODUCTION 

he transport industry finds itself in a transformation process 

to incorporate new technological trends such as, the 

Internet of Things (IoT) and Big Data. Multiple technological 

tools, apps, vehicle devices and external devices have been 

developed in the last decade with the objective of ensuring 

interconnection between older and new vehicle models. 

Following this trend, it is estimated that by 2030 more than 70% 

of vehicles will have internet connection [1]. With this advance, 

vehicles are able to transmit the information of their own 

physical variables, which are captured either by the vehicle's 

own sensors or by external devices. 

By taking advantage of the data, developments used globally 

have been achieved. One example, that can be considered a Big 

Data application, is navigation and traffic detection 

applications, which capture the position and speed of the 

vehicle; with all this information, vehicular traffic maps are 

generated.  

In response to these trends, data loggers, also known as In-

Vehicle Data Recorders (IVDR), have been developed. These 

are devices that read and store data on the physical variables of 

the vehicle's dynamic behavior [2], [3]. IVDR devices have 
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been used for several applications, for example in [4] the 

relationship between driving events, road characteristics and 

crashes is studied to predict crashes and identify high-risk 

places on the road network. In [5] an evaluation, based on IVDR 

and Survey Reviewed data on the driving behavior of 

inexperienced drivers with 3 to 4 years of driving experience is 

presented. The drivers improved their driving behavior while 
driving with IVDR data, compared to not having access to such 

information. The works developed in [6] and [7] present the 

measurement of vehicle performance following SAE (Society 

of Automotive Engineers) guidelines to identify driving habits 

and the usage of the information to design new vehicle parts, 

respectively. Collection of real data for the development of 

smart roads and the development of Typical Driving Cycles 

(TDC) to estimate fuel consumption and vehicle emissions are 

presented in [8], [9], [10].  

This article proposes the design and validation of a highly 

scalable and reliable IVDR for testing purposes, which captures 

the behavior of the physical variables of the vehicle by reading 

the information that transits between its computers, using the 

SAE port J1962, better known as the OBDII (On Board 

Diagnostics version 2) diagnostic port [11]. The IVDR 

developed in this work aims to operate as a testing tool to 

identify the typical driving cycle of the city of Chia, Colombia. 

First, a review of the commercially available devices and the 

academic developments will be made. Then, the parameters of 

design for testability, massification, feasibility, reliability and 

total cost will be reviewed and defined. After that, both 

hardware and software will be designed and tested via a data 

loss test and a performance comparison with a commercially 

available device. Finally, an application message decoding for 

the sensor´s IDs is explained. It should be declared that this 

paper was developed as a result from a section of this thesis [6] 

with permission from the author. 

II. RELATED RESEARCH 

There are multiple works where the concept of dataloggers in 

passenger vehicles has been developed. The commercially 

available ones, in their majority, work with the OBDII protocol 

to read the data from the diagnostic computer in real time. 

IVDRs have been developed, commercially or as academic 

work, under different design parameters, such as those shown 

in Table I, which displays a collection of information from 

different devices and their characteristics. 

Among the devices reviewed in Table I, the first eight are 

commercial devices, two of them were used for academic 

research [12], [13]. And the remaining ones are academic 

developments [14], [15], [16]. A weighting evaluation has been 
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applied to these devices, according to characteristics that are 

important for an IVDR with applications in IoT and Big Data. 

Each characteristic is evaluated from 0 to 5, this scale 

qualitatively evaluates the level of inclusion of a certain 

characteristic, with 5 being it is completely included and 0 that 

it is not included whatsoever. Regarding cost, it will be 

considered for a discussion of the best rated devices. 

The characteristics shown in Table I allow the IVDRs to be 

evaluated according to parameters that make it possible to 

guarantee that the device is reliable and capable of being used 

in massive distribution IoT and Big Data applications. The table 

shows that the devices with the highest scores are high-cost 

commercial developments. Among these, the NI9862 [12] and 

Race Technology DL1 Mk3 [13], which have the highest 

scores, also present the highest costs, hindering their use for 

mass distribution applications. Additionally, they do not have 

the capability to record data in the cloud. Therefore, among the 

reviewed devices, there is none that proves to be viable for mass 

use in IoT and Big Data applications. Thus, sustaining the need 

for a development of an IVDR that can satisfy those needs. 

III. DESIGN REQUIREMENTS 

A. IVDR Data Gathering Mechanism 

The IVDR information gathering process can be done in three 

ways: using external sensors, using the physical sensors of the 

vehicle's equipment, or extracting the information from the 

internal sensors of the vehicle that are available in the vehicle’s 

communication protocol. The third method is selected for the 

present research because it is non-invasive, inexpensive, and 

repeatable on most vehicles. Two concepts relevant to the 

development of the device were studied: the CAN bus  

(Controller Area Network) communication protocol and the 

OBDII diagnostic system protocol. 
 

1)  CAN bus Protocol 

This is the most widely used communication protocol in the 

automotive industry, it has the purpose to connect the different 

vehicle computers. The main characteristics of this protocol are 

listed in the ISO 15765-4 standard [17] and will be summarized 

below. The CAN bus is physically made up of two wires that 

carry a mirrored signal, CAN high and CAN low. Supporting 

speeds up to 1 Mbps with 8 bytes of data per message. For the 

version 2.0A, which is the one implemented in vehicles, 11 ID 

bits allow the bus access arbitration of messages. The lower the 

11 ID bit field the higher the message priority.  

In a CAN bus any of the controllers can function as master 

or slave, for automotive applications each controller can be a 

vehicle computer for a system, such as, the engine or brake 

system computers. Likewise, any controller can be 

disconnected or added to the bus at any time. Additionally, it 

has sophisticated methods of error detection and retransmission 

of erroneous messages: cyclic redundancy check, frame check, 

acknowledgment (ACK) error and Bit stuffing [18], [19].   

The CAN bus protocol transmits messages of different 

nature, in this research two types of messages are used: 

• CAN messages: These messages are periodically broadcasted 

to the bus (continuous), however, as there is no standard that 

defines them every manufacturer is free to define them as 

they see fit. This type of message is used by the vehicle’s 

computers to communicate with each other and share, for 

example, sensor readings as fast as possible. Each sensor is 

identified by an ID, which helps the vehicle’s computers to 

determine the origin of the message. Since this definition can 

change depending on the manufacturer and model of the 

vehicle, for its usage it is necessary to have the factory 
information or obtain it experimentally [18]. 

• OBDII messages: These are messages of the diagnostic 

system of the request type, that is, they only appear on the 

bus when they are requested. All OBDII parameters are 

known and standardized by the ISO 15765-4 [17] and ISO 

15031-5 [20] standards. Although OBDII messages can 

contain information about different physical variables, they 

are all identified by the same ID in the CAN bus protocol. 
 

2) OBDII Diagnostic System 

The OBDII system is used in the automotive industry for 

vehicle diagnosis. In 2001 the SAE published the standards of 

this system, compiled mainly in the SAE J1962 [11], SAE 

J1978 [21] and ISO 15765-4 [17] standards. This diagnostic 

TABLE I 

IVDR CHARACTERISTIC COMPARISON FOR COMMERCIAL AND ACADEMIC DEVELOPMENTS 

IVDR 

CAN 

bus 

(0.2) 

GPS 

(0.075

) 

Industry 

Validated 

(0.2) 

Information 

Loss 

(0.2) 

Programabl

e 

(0.05) 

Memory 

recordin

g 

(0.15) 

Cloud 

recordin

g 

(0.075) 

Portabl

e 

(0.05) 

Cost 

(USD

) 

weighting 

ELM 327 0 0 1 1 0 0 0 5 20 0.65 

Vector VN1600 5 0 5 5 0 0 0 2 3000 3.1 

myRIO+X-CAN 5 5 2 3 5 3 4 5 950 3.625 

NI9862 [12] 5 5 4 5 5 3 3 3 3000 4.25 

Race Technology 

DL1 Mk3 [13] 

5 5 4 5 0 5 0 3 960 4.075 

OBD Mini Logger 5 5 2 4 0 5 4 5 800 3.875 

DashDyno SPD 5 5 3 3 0 5 0 5 350 3.575 

IOSiX OBDII 

Datalogger 

5 0 0 4 0 5 0 5 700 2.8 

OBDII Network 

[14] 

0 0 2 5 5 5 3 3 50 2.775 

Arduino OBDII 

Device [15] 

0 5 0 1 5 1 3 4 160 1.4 

Monitoring 

System [16] 

0 5 0 3 5 5 5 5 45 2.6 
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system can be implemented over any automotive 

communication protocol available, but it is implemented over 

CAN bus for most vehicles. 

OBDII has ten standardized operation modes [17], each of 

them with different functionalities. The developed IVDR can 

operate in any of the ten modes; however, it mainly operates 

using mode one for real-time access to the standardized 

parameters known as PIDs (Parameter IDs). These identifiers 

are memory addresses that store dynamic variables of the 

vehicle, for example: engine speed, air mass flow, among 

others. 

B. IVDR Design Requirements Definition 

After reviewing the characteristics of the IVDRs available in 

Table 1, the following design parameters are proposed for this 

work: 

• CAN/OBDII: must allow connection with the CAN 

communications protocol. And as a result of that, with the 

OBDII diagnostic protocol too. 

• Standard: the measured variables with the IVDR must 

comply with the resolution and tolerance specified by the 

automotive standards. 

• GPS (Global Positioning System): since not all vehicles 

have this equipment, the IVDR must integrate it. 

• Industrial validation: at least the Microcontroller Unit must 

be a component validated in the automotive industry. 

• Information loss: the processing speed must allow reading 
all the frames that pass through the CAN bus to ensure that 

there is no loss of information. 

• Programmable: must be programmable, so that 

functionalities can be added. 

• Real time PC connection: must allow real time connection 

to a PC to perform online analysis. 

• High-capacity memory: a lot of information travels 

through the bus, making necessary to have a high-capacity 

external storage unit, in this case a microSD memory card. 

• Cloud recording: must have internet connectivity to allow 

uploading information to the cloud in real time. 

• Portable: it needs to be as small as possible, to not visually 

impede driving and allow easy installation. 

• Power: must be powered from the SAEJ1962 connector 

[14]. 

• Cost: since the aim is to design a device that can be easily 

massified, it must be a low-cost device. This is one of the 

main design requirements. 

IV. HARDWARE DESIGN AND DEVELOPMENT 

The hardware used for the IVDR must be compliant with the 

design requirements mentioned previously. The most important 

device in the hardware is the Microcontroller Unit (MCU), as it 

is the device that could limit the operational scope of the IVDR. 

Consequently, the selection of the MCU must be careful and 

must follow an adequate process.  

Table II is used for the MCU selection, in which a collection 

of the characteristics of different brands and models is qualified 

by means of a weighting matrix. Each of the characteristics is 

rated from 0 to 5, with 5 being that it fully complies with the 

parameter of that the evaluated characteristic is of excellent 

quality and 0 the opposite case. After this analysis, it was 

decided to use the NXP TRK-KEA128 MCU due to its industry 

validation and its compatibility with the CAN bus protocol. 

Table III presents a list of the selected modules along with 

their costs. It is observed that the bill of materials is 110 dollars, 

which is within the range of the IVDR developed in academic 

works, [14], [15], [16]. The added value of this IVDR comes by 

implementing the use of a microcontroller validated in the 

industry; thus, complying with the design parameters 

previously established. 

The IVDR prototype includes: 

• Two LEDs working as operating indicators. 

• A pushbutton electrically connected to a digital input 

interruption of the microcontroller, to generate the definitive 
TABLE II 

IVDR MICROCONTROLLER COMPARISON 

Development Board 
Microcontroller 

(0.2) 

Automotive 

Validation 

(0.2) 

SD memory SPI 

Compatibility  

(0.05) 

# of UARTs 

(0.05) 

Direct CAN bus 

Compatibility 

(0.25) 

MCU Cost 

(USD) 

(0.25) 

weighting 

Arduino Mega ATMega1280 2 No 0 Yes 5 Yes 4 No 0 40 4 2.8 
Raspberry PI 3 Model B 1.2GHz 64-bit quad-core 

ARM Cortex-A53 CPU 
3 No 0 Yes 5 Yes 1 No 0 46 4 2.4 

STM32F4DISCOVERY STM32F407VGT6 32-bit 

ARM Cortex® -M4 
3 No 0 Yes 5 Yes 3 No 0 20 5 2.95 

NXP TRK-KEA64 32-bit MCU core from 

ARM’s Cortex-M class 
5 Yes 5 Yes 5 Yes 2 No 0 49 4 3.375 

NXP TRK-KEA128 32-bit MCU core from 

ARM’s Cortex-M class 
5 Yes 5 Yes 5 Yes 3 Yes 5 49 4 3.825 

Tiva C Series 

TM4C123G USB+CAN 

Tiva TM4C123GH6PGE 

ARM® Cortex™-M4-
based 

5 Yes 5 Yes 5 Yes 4 Yes 5 150 2 3.725 

Infineon KIT XMC43 

RELAX_ECAT_V1 

XMC4300-F100 5 Yes 5 Yes 5 Yes 2 Yes 5 62 3 3.475 

Renesas RL78/F14  RL78/F14 16-Bit 5 Yes 5 Yes 5 Yes 2 Yes 5 275 1 3.175 
         

 
    

 

TABLE III 

IVDR HARDWARE MODULES 

Module Reference Cost 

GPS Module Ublox NEO-6M 10 

SD Module microSD 2.5 

microSD 16GB 7 

Power Module DC-DC Buck LM2596 5 

GPRS Module SIM808 20 

Microcontroller NXP TRK-KEA128 50 

SAEJ1962 Cable OBDII-DB9 9 

Miscellaneous Cables, LEDs, fuses 5 

Casing Dexson DXN500DG 1.5 

Total ---------------------------------------------- 110 
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stop of the IVDR operation and to be able to extract the data 

from the SD card in a safe way.  

• DB9 connector for linking the IVDR with the SAE J1969 

port. This type of connector is used since cables with this 

configuration are commercially available. 

• A switch that allows the IVDR to be de-energized.  

• It has a slot to access the microSD socket.  

• It has a slot to access the micro-USB port so that the 

software can be updated if needed and for real time readings 

with a PC. 

• The size should be as small as possible, complying the 

portability design requirement, considering that it does not 

visually impede driving. 

 In Fig. 1 the modular diagram of the electronic design is 

identified, in Fig. 2 the selected components are presented 

graphically. Additionally, Fig. 3 presents the final mechanical 

design. 

V. SOFTWARE DEVELOPMENT 

As described above, the main function of the IVDR is to 

connect the datalogger to the vehicle’s CAN bus. The storage 

means are: store the information in a removable SD memory, 

upload the data to the cloud through a GPRS (General Packet 

Radio Service) module and monitor the bus in real time through 

a PC. In addition to the CAN messages, it is necessary to collect 

the geographical position through a GPS module. Within the 

functionality of the IVDR, each of the peripherals (SD, GPRS, 

PC, GPS) can be deactivated at the convenience of the user 

without interrupting the operation of the IVDR. 

 On the other hand, the device has different operating modes, 

which have to do with how the device collects data from the 

CAN bus, the operating mode can be selected by the user each 

time the application is restarted. These modes of operation are: 

• Sniffer Mode: reads and records every single message 

that passes through the CAN bus. 

• IDs Mode: applies a mask over the ID section of the 

incoming messages to record the desired IDs 

exclusively. 

• OBDII Mode: applies a mask over the ID of the 

incoming messages to read only OBDII messages, 

which are usually located in ID 0x7E8. Additionally, 

the desired PIDs must be selected. 

• IDs and OBDII Mode: this operation mode is a 

combination of the two previous modes. Allowing to 

record specific CAN bus and OBDII messages.  

Software development is supported on an interrupt-based 

state machine because both hardware and software are required 

to have control over the operation. This means that the 

operation of the algorithms does not depend on a sequential or 

synchronous program, but on themselves and on external 

events. The code developed is scalable and has an error 

verification system to have software monitoring control. The 

main program and interrupt routines are: 

• CAN reception interruption: messages from the CAN bus are 

read and stored in a buffer. It also controls the request for data 

by OBDII. 

• Periodic Interrupt Timer (PIT) interruptions: there are two 

interruptions of this type, one to synchronize the OBDII data 

requests and another to time some functions, such as, error 

handling and periodic functions. 

• Serial UART (Universal Asynchronous Receiver-

Transmitter) interruptions: there are two UART 

interruptions, one receives and stores to the buffer the 
incoming data from the GPS module and another to store the 

response of the GPRS module to the commands issued.  

• IRQ (external interrupt request) interruption: it is in charge of 

completely stopping the program and moving to an infinite 

cycle. This to close the last open txt file on the SD memory 

card and cut off GPRS communication.  

• Main program routine: it initializes all microcontroller 

resources and peripherals. Its function is to carry out the 

asynchronous transmission of information through buffers, 

either to the SD memory card, to the cloud (GPRS) or by 

UART to a PC.  

Fig. 4 schematizes the state machine followed by the IVDR 

software; it is observed that the interruptions do not overlap. In 

 
Fig.1. Modular electronic diagram for the IVDR. 

 
Fig. 4.  IVDR State machine. 

 

 
Fig. 4.  IVDR State machine. 
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Fig. 2. Top view of the electronic modules and the microcontroller. 

 
Fig. 3. Final IVDR design. 

 

 
Fig. 3.  Final IVDR design. 
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case of activating several interruptions at the same time, the 

order of priority is applied: IRQ, UART, PIT, CAN [22]. 

The microcontroller software is always in an infinite loop in 
the main program, waiting for an event, to transmit it 

asynchronously by any of the three peripherals (SD, GPRS, 

PC). In case of an external event, such as, a message on the 

CAN bus or a GPS message, the corresponding interrupt is 

activated, the interrupt function is executed and then the 

operation returns to the main program again. All the 

information flow between peripherals and the microcontroller 

is done through buffers. 

The four most important algorithms (see Fig. 4) developed 

for the operation of the IVDR are RX CAN Interrup, RS 

UART0 GPS, RS UART0 GPRS and PIT0 serial interrupt. 
These algorithms are described in greater depth below. 

A. CAN Reception Interrupt 

Fig. 5 presents the general algorithm for the CAN reception 

interrupt, whose main function is to read the messages from the 

bus and store them in a buffer. The interrupt is activated when 

a CAN message available, which occurs with high periodicity 
since there can be messages every 200 microseconds on the bus 

[17]. Said buffer is cyclical with a fixed size, but with variable 

occupation that depends on the amount of data received from 

the CAN bus; this buffer is traversed with the help of a pointer. 

It is necessary that the size of the buffer allows significant 

storage, so that it will not overflow without transmitting the 

message.  

The sequence of this routine is: 

• When the interrupt is activated, the most relevant parameters 

of the CAN message are read, which are: the ID, 8 bytes of 

data and the timestamp. The latter has the functionality of 

locating each message in time and is extracted from the CAN 
bus hardware. 

• Depending on the operation mode, the required messages are 

stored in the buffer, to later be transmitted to any of the 

peripherals in the main program routine; this is done using 

multiple pointers that together allow to identify the state of 

the buffer. It should be noted that this buffer stores CAN 

frames in binary format and not ASCII (American Standard 

Code for Information Interchange) to save capacity and 

computing time. 

B. GPS UART Serial Interrupt 

To communicate the GPS NEO-6M module with the 

microcontroller, only the reception channel is required. This 

module upon powering up and finding a geographical position 

starts transmitting frames with the NMEA (National Marines 

and Electronics Association) system coding [23], from which 

the GPGGA (Global positioning system fix data) protocol is 

extracted. This protocol contains time, latitude, longitude, and 

height above sea level. Fig. 6 presents the serial reception 

interrupt routine for the GPS. The main characteristics of this 

routine are described below: 

• The UART hardware reads the frames received from the GPS 

byte by byte, these are stored in a static buffer, different from 

the CAN bus buffer, with the capacity for a single GPS 

message. 

• When a frame finish transmitting, a carriage return line feed 

character is received; at this moment, the message identifier 

is checked and if it is equivalent to “GPGGA” a flag 

(msgGPS) is enabled. This flag indicates that there is a valid 

frame to store in the buffer and is used by the GPS routine of 

the main program to store the buffer in some peripheral. 

C. GPRS UART Serial Interrupt 

The selected GPRS module used for the present research can 

operate under different methods, the one used for the IVDR is 
the HTTP (Hypertext Transfer Protocol) GET method. The 

module is controlled using AT commands via a UART channel. 

Every time the module is interacted with, it generates a response 

that is processed through a serial interrupt. The responses used 

in this development are: "OK", "ERROR" or "200". 

To use the GPRS module it is necessary to initialize the 

SIM808 chip. After being initialized, it goes to the infinite cycle 

of the main program and while the peripheral is operating, the 

required information is transmitted to the cloud. This process is 

outlined in Fig. 7 with the required AT commands and is carried 

out with the following considerations: 

• To continuously upload parameters to the cloud with the 

 
Fig. 5.  Flowchart of the data storage algorithm for CAN messages. 
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Fig. 6.  Flowchart of the serial interrupt algorithm for GPS data. 
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GET HTTP method and the GPRS module, it is necessary 

to carry out 2 steps: in step 1, write the command AT + 

HTTPPARA = "URL", "XXXX" where XXXX is the 

domain and in the step 2, after receiving the OK response 

from step 1, the command AT + HTTPACTION = 0 is 

written and the response 200 is expected, meaning that the 

message was received correctly. 

• When a certain time is elapsed, 1 minute in this case, it 

means no response was received for the last AT command, 

therefore step 1 must be repeated. The time keeping 

function is described in the error handling algorithms 

below. 

D. Error Handling Algorithms 

As previously mentioned, the error handling algorithms are 

synchronized and programmed in a Periodic Time Interruption 

(PIT). In this interrupt the states of different flags are checked 

to monitor the operation of the IVDR. These functions are 

presented in Fig. 8 and are described below: 

• Error function to determine if the main program stopped its 

execution without it being requested by the user. In the 

main program, each time that a new infinite loop starts a 

flag is incremented. This function compares the current and 

the previous value of said flag, if this value has not changed 
in the last minute, it means that the microcontroller got 

stuck in some routine, different from the main one. If this 

error is generated, an alarm is activated and the execution 

of the IVDR stops definitively. 

• CAN bus reading problem error function: a variable is used 

to save the elapsed time without reading CAN messages. 

Each time one minute is elapsed, a flag is set, and the 

elapsed time variable is reset. Both the flag and the variable 

are reset with the arrival of each CAN bus message, in this 

way non-consecutive times are not accumulated. The flag 

that is set in this function is used to write a message in the 

SD memory that indicates a CAN bus reading problem. 

• GPRS response error function: in this function a variable is 

incremented every second, said variable is reset each time 
the GPRS routine gets a response from the module. This 

variable accumulates the time it takes for the module to 

respond. If the time is greater than 1 minute, the 

transmission of the GPRS module is restarted. 

• SD txt file creation tracking function: to minimize the 

amount of information lost during prolonged experiments 

in case of an error happening, the information collected is 

split up into several files, each file containing five minutes 

of experimental data. The moment the IVDR continuously 

reads CAN messages, the elapsed time is stored in a 

variable. After the selected time (5 min) is reached, a flag 
is set that is used in the CAN bus routine to create a new 

txt file in the SD memory. 

E. Human-Machine Interface 

In addition to software design in the IVDR, it is necessary to 

develop programs that allow data manipulation on a computer. 

For this, various human-machine interfaces are developed in 

MATLAB and LabVIEW depending on the IVDR peripherals 

activated: 

• PC: this program allows to monitor the messages sent from 

the IVDR buffer to the PC in real time. Likewise, it creates 

a file where it stores the messages received through the 

serial port in the order they were received. 

• SD: this program allows to integrate the data present in the 

separate files saved in the SD memory card during the 

IVDR operation. 

 
Fig. 7.  GPRS module cloud data transmission flowchart algorithm. 
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Fig. 8.  Error handling algorithms flowchart. 
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• GPRS: for this peripheral it is necessary to develop a 

program that allows storing the IVDR information in the 

cloud. In the present research Google Cloud was used. 

VI. EXPERIMENTS AND VALIDATION 

As part of the validation of the IVDR operation, two tests were 

performed:  

1. Data acquisition comparison between the IVDR and an 

industrial datalogger. 

2. IVDR data loss analysis. 

3. CAN bus periodic message ID decoding methodology. 

A. IVDR vs NI9862 Validation 

For this validation test, the performance of the IVDR must 

be compared against an industry validated device, in this case 

the NI cRIO-9063 chassis plus NI9862 data acquisition card. 

For this purpose, an acceleration performance test following 

SAE J1491 standard [24] with five repetitions was done. In each 

test simultaneous data acquisition is carried out with both the 

IVDR and the NI9862.  

During these experiments the IVDR is used in IDs and 

OBDII mode; on the other hand, the NI device is used in sniffer 

mode and afterwards with the help of a LabVIEW program the 

OBDII data is extracted. All experiments were performed with 

a Jeep Patriot, at sea level on the Mexican Pacific coast, on a 

street with an approximate slope of zero degrees and following 

all the requirements of the SAE standard for acceleration 

performance tests. 

Fig. 9 shows the comparison of the linear speed reading with 

the two instruments, the NI and the IVDR, for the first 

experiment. The other four repetitions present a similar 

behavior. The similarity between the information acquired with 

both instruments can be observed. Table IV presents the 

comparison between the resolution of the instruments as 

required by the SAE standard for acceleration performance [24] 

and the resolution provided by the IVDR, clearly demonstrating 

that it can fulfill the requirements set by the standard. 

To prove the similarity of the results obtained, a statistical 

analysis consisting of three steps is carried out [25]. In the first 

step, a Kolmogorov-Smirnov normality test is performed on the 

data from each device, to determine whether to use parametric 

or non-parametric statistics. The numeric results of the 

normality test are presented in Table V. It is observed that the 

hypothesis (H) in both cases has a value of 1, indicating that 

they do not have normal behavior. In turn, the p-value is much 

less than 0.05 (5%), indicating that the null hypothesis, which 

proposes that the data present normal behavior is rejected. 

Therefore, the alternative hypothesis is accepted indicating the 

need to use non-parametric statistics for the data analysis. 

The second step is to perform the non-parametric analysis, 

using the Wilcoxon signed-rank test for two same sized 

dependent samples. Table VI shows the result for each 

repetition, it can be observed that the means are equal for each 

test since they present a p-value of 1, much higher than the 

alpha of 0.05. This indicates that for the 5 repetitions, the null 

hypothesis (h=0) is accepted, which proposes that the means of 

the two populations are equal, with no significant data 

difference. Also, the average for the different devices is exactly 

the same because they are reading the same data. If these 

averages had significantly different results, it would imply that 

there is information loss in one of the devices. 

The last step is to perform a Pearson correlation test on the 

data obtained in each repetition. For all cases, a result of 1 was 

obtained both in speed and time. Thus, having a high positive 

correlation, which implies a high similarity in the form of the 

responses. 

B. IVDR Data loss Analysis 

For the data loss analysis, one hundred and fifty tests were 

carried out with an approximate duration of 18 minutes per test. 

 
Fig. 9.  Linear speed comparison from CAN with NI and IVDR. 

 
TABLE IV 

IVDR RESOLUTION VS SAE STANDARD 

Variable Unit 
SAE 

Standard 
IVDR-CAN 

Time s 0.1 0.01 

Linear Speed km/hr 0.4 0.0078 

Engine Speed RPM 25 0.25 
    

 

 

 

TABLE V 

KOLMOGOROV –SMIRNOV NORMALITY TEST FOR THE NI AND IVDR DEVICE 

DATA 

Kolmogorov-Smirnov NI-CAN IVDR-CAN 

Median 68.69 68.83 

Standard Deviation 29.35 29.39 

H 1 1 

P 2.01E-06 1.85E-06 

 

 

 

TABLE VI 

WILCOXON SIGNED-RANK TEST FOR NI VS IVDR 

Wilcoxon test P1 P2 P3 P4 P5 

H 0 0 0 0 0 

P 1 1 1 1 1 

Mean NI-CAN 68.69 72.61 72.77 72.46 71.45 

Mean IVDR-CAN 68.69 72.61 72.77 72.46 71.45 

 

 

 

TABLE VII 

IDS CAPTURED BY THE IVDR DURING DATA LOSS TESTS 

ID Sampling rate (seg) ID Protocol 

513 0.01 ID CANbus 

517 0.01 ID CANbus 

1056 0.1 ID CANbus 

1060 0.1 ID CANbus 

1200 0.01 ID CANbus 

2024 0.03 ID OBDII 
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In each test a fixed route of five kilometers is traveled in the 

city of Chía, Colombia; driving a Ford Fiesta. With the help of 

the IVDR, in each test the acquisition of the IDs mentioned in 

Table VII are stored in an SD memory for later analysis. 

To identify the amount of data lost, the average sampling time 
and the standard deviation of each observation are calculated 

for each ID. Subsequently, the sampling time of each 

observation is compared with the average sampling time for its 

ID plus an uncertainty given by the standard deviation. Any 

sampling outside the mentioned range is considered data loss. 

Table VIII shows the results of this test, indicating that 

according to the established definition of missing data, the 

IVDR presents no data loss. 

C. CAN Bus Periodic Message ID Decoding 

The procedure to find specific IDs for a sensor of the vehicle 

requires that the IVDR operate in sniffer mode. The 

identification of each ID requires different tests to be carried 

out on the vehicle, collecting the data with the IVDR, to be 

analyzed later using reverse engineering.  

The procedure to find the odometer ID is presented below, 

whose procedure can be repeated to find other IDs. 

1. Read the CAN bus messages with the engine running, 

without movement. In this case, all data fields and IDs that 

present changes must be discarded. 

2. Read the bus with the engine off, the vehicle is pushed 

forward a few meters. All data fields and IDs that do not 

change are discarded. 

3. A test with known distance is run and the remaining IDs 

from the previous step are analyzed. In this test 

approximately three hundred and fifty meters are traversed. 

4. From experience it is known that the odometer ID is usually 

an incremental counter. Fig. 10 shows the ID that presents 

this behavior for the previous test. 

5. In Fig. 10 it can be seen that the byte is an incremental 

counter that goes from 0 to 253 and that this counter was 

reset 6.9. Meaning that if the test run is 350 meters, each 

counter reset is equivalent to 50.72. Rounding off, 0.2 

meters are traveled for each counter increment, or 50.8 

meters each reset. With this appreciation, the distance in 

meters of said test is plotted in Fig. 11.  

6. Finally, the previous steps must be repeated several times 

with different routes, to ensure a proper decoding for the 

variable. 

VII. CONCLUSIONS 

In this work, an IVDR was developed complying with the 

initially proposed design requirements. This device, presents  

no data loss and can be easily used for testing purposes,  

allowing it to be massively distributed for IoT and Big Data 

applications.  

A series of tests were applied over the developed IVDR to 

evaluate its performance, comparing it against an industry 

validated datalogger. A similar behavior is observed between 

both devices, which is statistically proved by having a high 
positive Pearson correlation. Also, with help of the Wilcoxon 

signed-rank test for mean equality in dependent samples, it is 

proven that the means of the two populations are not 

significantly different from a statistics point of view. 

Likewise, the IVDR has been used in different research, 

highlighting the use to obtain the typical driving cycle for the 

city of Chía, Colombia, operating for more than 14 months and 

10,000 kilometers. During the present work, 150 tests were run, 

demonstrating that the device did not present any significant 

data loss events and has the capability to adapt for multiple 

testing operations. An additional test was included to showcase 
a potential application for the IVDR. The methodology that 

permits the identification and decoding of the odometer ID can 

be extrapolated to any other variable present on the CAN bus. 

Finally, the authors propose as future work to use this device 

as instrumentation equipment for the extraction of TDCs, 

methodologies to measure fuel consumption and greenhouse gas 

emissions in light commercial vehicles. 
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TABLE VIII 

DATA LOSS TESTS RESULTS 

ID 
Quantity of 

observations 

Average 

sampling 

rate (seg) 

Standard 

deviation 

(seg) 

Lost data 

513 13540796 0.010043825 0.00271150214 0 
517 13540877 0.010043764 0.00270993422 0 
1056 1353915 0.100440092 0.00915493517 0 
1060 1353930 0.100438835 0.00914795529 0 
1200 8095714 0.010035344 0.00253127891 0 
2024 4063321 0.030107916 0.00455430137 0 

 

 

 

 
Fig. 10.  Odometer ID data field analysis. 

 

 
Fig. 11.  Distance traveled during Odometer ID decoding test. 
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