
IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 2, FEBRUARY 2023 183

Abstract— This paper presents the design and statistical

validation of an In-Vehicle Data Recorder System (IVDR) for

testing purposes, implementing the use of CAN bus (Controller Area

Network) communications protocol through the SAE J1962 port.

The device works according to an interrupt-based algorithm that

reads the vehicle’s sensor data sent through the CAN bus network.

This data is stored in an external memory card and sent to a server

using a General Packet Radio Services (GPRS) module, it can also

be connected to a computer to view the data in real time. The

proposed IVDR was thoroughly validated by means of multiple

experiments, including one in which its performance was

compared to an industrial use device with similar functions, it has

also already been used in the development of a Typical Driving

Cycle (TDC) for the city of Chía in Colombia. Statistical analysis

shows that the device performs similarly against commercial

devices and complies with SAE standard guidelines, presenting the

device as a low-cost and reliable option for testing purposes and

massively distributed IoT applications.

Index Terms— Automotive communication protocols, CAN bus,

In-Vehicle Data Recorder, OBDII, Typical Driving Cycles.

I. INTRODUCTION

he transport industry finds itself in a transformation process

to incorporate new technological trends such as, the

Internet of Things (IoT) and Big Data. Multiple technological

tools, apps, vehicle devices and external devices have been

developed in the last decade with the objective of ensuring

interconnection between older and new vehicle models.

Following this trend, it is estimated that by 2030 more than 70%

of vehicles will have internet connection [1]. With this advance,

vehicles are able to transmit the information of their own

physical variables, which are captured either by the vehicle's

own sensors or by external devices.

By taking advantage of the data, developments used globally

have been achieved. One example, that can be considered a Big

Data application, is navigation and traffic detection

applications, which capture the position and speed of the

vehicle; with all this information, vehicular traffic maps are

generated.

In response to these trends, data loggers, also known as In-

Vehicle Data Recorders (IVDR), have been developed. These

are devices that read and store data on the physical variables of

the vehicle's dynamic behavior [2], [3]. IVDR devices have

J. Echeverry-Mejia, D. Contreras and V. Vásquez are part of the Escuela de

Ingeniería y Ciencias at Tecnológico de Monterrey (e-mails:

jecheverry@tec.mx, decontreras@tec.mx & vlopez@tec.mx).

F. Arenas-Uribe is part of the HCD Group at Universidad de La Sabana in

Chía, Colombia (e-mail: felipearur@unisabana.edu.co).

been used for several applications, for example in [4] the

relationship between driving events, road characteristics and

crashes is studied to predict crashes and identify high-risk

places on the road network. In [5] an evaluation, based on IVDR

and Survey Reviewed data on the driving behavior of

inexperienced drivers with 3 to 4 years of driving experience is

presented. The drivers improved their driving behavior while
driving with IVDR data, compared to not having access to such

information. The works developed in [6] and [7] present the

measurement of vehicle performance following SAE (Society

of Automotive Engineers) guidelines to identify driving habits

and the usage of the information to design new vehicle parts,

respectively. Collection of real data for the development of

smart roads and the development of Typical Driving Cycles

(TDC) to estimate fuel consumption and vehicle emissions are

presented in [8], [9], [10].

This article proposes the design and validation of a highly

scalable and reliable IVDR for testing purposes, which captures

the behavior of the physical variables of the vehicle by reading

the information that transits between its computers, using the

SAE port J1962, better known as the OBDII (On Board

Diagnostics version 2) diagnostic port [11]. The IVDR

developed in this work aims to operate as a testing tool to

identify the typical driving cycle of the city of Chia, Colombia.

First, a review of the commercially available devices and the

academic developments will be made. Then, the parameters of

design for testability, massification, feasibility, reliability and

total cost will be reviewed and defined. After that, both

hardware and software will be designed and tested via a data

loss test and a performance comparison with a commercially

available device. Finally, an application message decoding for

the sensor´s IDs is explained. It should be declared that this

paper was developed as a result from a section of this thesis [6]

with permission from the author.

II. RELATED RESEARCH

There are multiple works where the concept of dataloggers in

passenger vehicles has been developed. The commercially

available ones, in their majority, work with the OBDII protocol

to read the data from the diagnostic computer in real time.

IVDRs have been developed, commercially or as academic

work, under different design parameters, such as those shown

in Table I, which displays a collection of information from

different devices and their characteristics.

Among the devices reviewed in Table I, the first eight are

commercial devices, two of them were used for academic

research [12], [13]. And the remaining ones are academic

developments [14], [15], [16]. A weighting evaluation has been

Design and Validation of an In-Vehicle Data

Recorder System for Testing Purposes

Julian Echeverry-Mejia, Felipe Arenas-Uribe, Diego Contreras and Virgilio Vásquez

T

mailto:jecheverry@tec.mx
mailto:decontreras@tec.mx
mailto:vlopez@tec.mx

184 IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 2, FEBRUARY 2023

applied to these devices, according to characteristics that are

important for an IVDR with applications in IoT and Big Data.

Each characteristic is evaluated from 0 to 5, this scale

qualitatively evaluates the level of inclusion of a certain

characteristic, with 5 being it is completely included and 0 that

it is not included whatsoever. Regarding cost, it will be

considered for a discussion of the best rated devices.

The characteristics shown in Table I allow the IVDRs to be

evaluated according to parameters that make it possible to

guarantee that the device is reliable and capable of being used

in massive distribution IoT and Big Data applications. The table

shows that the devices with the highest scores are high-cost

commercial developments. Among these, the NI9862 [12] and

Race Technology DL1 Mk3 [13], which have the highest

scores, also present the highest costs, hindering their use for

mass distribution applications. Additionally, they do not have

the capability to record data in the cloud. Therefore, among the

reviewed devices, there is none that proves to be viable for mass

use in IoT and Big Data applications. Thus, sustaining the need

for a development of an IVDR that can satisfy those needs.

III. DESIGN REQUIREMENTS

A. IVDR Data Gathering Mechanism

The IVDR information gathering process can be done in three

ways: using external sensors, using the physical sensors of the

vehicle's equipment, or extracting the information from the

internal sensors of the vehicle that are available in the vehicle’s

communication protocol. The third method is selected for the

present research because it is non-invasive, inexpensive, and

repeatable on most vehicles. Two concepts relevant to the

development of the device were studied: the CAN bus

(Controller Area Network) communication protocol and the

OBDII diagnostic system protocol.

1) CAN bus Protocol

This is the most widely used communication protocol in the

automotive industry, it has the purpose to connect the different

vehicle computers. The main characteristics of this protocol are

listed in the ISO 15765-4 standard [17] and will be summarized

below. The CAN bus is physically made up of two wires that

carry a mirrored signal, CAN high and CAN low. Supporting

speeds up to 1 Mbps with 8 bytes of data per message. For the

version 2.0A, which is the one implemented in vehicles, 11 ID

bits allow the bus access arbitration of messages. The lower the

11 ID bit field the higher the message priority.

In a CAN bus any of the controllers can function as master

or slave, for automotive applications each controller can be a

vehicle computer for a system, such as, the engine or brake

system computers. Likewise, any controller can be

disconnected or added to the bus at any time. Additionally, it

has sophisticated methods of error detection and retransmission

of erroneous messages: cyclic redundancy check, frame check,

acknowledgment (ACK) error and Bit stuffing [18], [19].

The CAN bus protocol transmits messages of different

nature, in this research two types of messages are used:

• CAN messages: These messages are periodically broadcasted

to the bus (continuous), however, as there is no standard that

defines them every manufacturer is free to define them as

they see fit. This type of message is used by the vehicle’s

computers to communicate with each other and share, for

example, sensor readings as fast as possible. Each sensor is

identified by an ID, which helps the vehicle’s computers to

determine the origin of the message. Since this definition can

change depending on the manufacturer and model of the

vehicle, for its usage it is necessary to have the factory
information or obtain it experimentally [18].

• OBDII messages: These are messages of the diagnostic

system of the request type, that is, they only appear on the

bus when they are requested. All OBDII parameters are

known and standardized by the ISO 15765-4 [17] and ISO

15031-5 [20] standards. Although OBDII messages can

contain information about different physical variables, they

are all identified by the same ID in the CAN bus protocol.

2) OBDII Diagnostic System

The OBDII system is used in the automotive industry for

vehicle diagnosis. In 2001 the SAE published the standards of

this system, compiled mainly in the SAE J1962 [11], SAE

J1978 [21] and ISO 15765-4 [17] standards. This diagnostic

TABLE I

IVDR CHARACTERISTIC COMPARISON FOR COMMERCIAL AND ACADEMIC DEVELOPMENTS

IVDR

CAN

bus

(0.2)

GPS

(0.075

)

Industry

Validated

(0.2)

Information

Loss

(0.2)

Programabl

e

(0.05)

Memory

recordin

g

(0.15)

Cloud

recordin

g

(0.075)

Portabl

e

(0.05)

Cost

(USD

)

weighting

ELM 327 0 0 1 1 0 0 0 5 20 0.65

Vector VN1600 5 0 5 5 0 0 0 2 3000 3.1

myRIO+X-CAN 5 5 2 3 5 3 4 5 950 3.625

NI9862 [12] 5 5 4 5 5 3 3 3 3000 4.25

Race Technology

DL1 Mk3 [13]

5 5 4 5 0 5 0 3 960 4.075

OBD Mini Logger 5 5 2 4 0 5 4 5 800 3.875

DashDyno SPD 5 5 3 3 0 5 0 5 350 3.575

IOSiX OBDII

Datalogger

5 0 0 4 0 5 0 5 700 2.8

OBDII Network

[14]

0 0 2 5 5 5 3 3 50 2.775

Arduino OBDII

Device [15]

0 5 0 1 5 1 3 4 160 1.4

Monitoring

System [16]

0 5 0 3 5 5 5 5 45 2.6

ECHEVERRY-MEJIA et al.: DESIGN AND PROTOTYPING OF TRANSFORMERLESS DC-DC 185

system can be implemented over any automotive

communication protocol available, but it is implemented over

CAN bus for most vehicles.

OBDII has ten standardized operation modes [17], each of

them with different functionalities. The developed IVDR can

operate in any of the ten modes; however, it mainly operates

using mode one for real-time access to the standardized

parameters known as PIDs (Parameter IDs). These identifiers

are memory addresses that store dynamic variables of the

vehicle, for example: engine speed, air mass flow, among

others.

B. IVDR Design Requirements Definition

After reviewing the characteristics of the IVDRs available in

Table 1, the following design parameters are proposed for this

work:

• CAN/OBDII: must allow connection with the CAN

communications protocol. And as a result of that, with the

OBDII diagnostic protocol too.

• Standard: the measured variables with the IVDR must

comply with the resolution and tolerance specified by the

automotive standards.

• GPS (Global Positioning System): since not all vehicles

have this equipment, the IVDR must integrate it.

• Industrial validation: at least the Microcontroller Unit must

be a component validated in the automotive industry.

• Information loss: the processing speed must allow reading
all the frames that pass through the CAN bus to ensure that

there is no loss of information.

• Programmable: must be programmable, so that

functionalities can be added.

• Real time PC connection: must allow real time connection

to a PC to perform online analysis.

• High-capacity memory: a lot of information travels

through the bus, making necessary to have a high-capacity

external storage unit, in this case a microSD memory card.

• Cloud recording: must have internet connectivity to allow

uploading information to the cloud in real time.

• Portable: it needs to be as small as possible, to not visually

impede driving and allow easy installation.

• Power: must be powered from the SAEJ1962 connector

[14].

• Cost: since the aim is to design a device that can be easily

massified, it must be a low-cost device. This is one of the

main design requirements.

IV. HARDWARE DESIGN AND DEVELOPMENT

The hardware used for the IVDR must be compliant with the

design requirements mentioned previously. The most important

device in the hardware is the Microcontroller Unit (MCU), as it

is the device that could limit the operational scope of the IVDR.

Consequently, the selection of the MCU must be careful and

must follow an adequate process.

Table II is used for the MCU selection, in which a collection

of the characteristics of different brands and models is qualified

by means of a weighting matrix. Each of the characteristics is

rated from 0 to 5, with 5 being that it fully complies with the

parameter of that the evaluated characteristic is of excellent

quality and 0 the opposite case. After this analysis, it was

decided to use the NXP TRK-KEA128 MCU due to its industry

validation and its compatibility with the CAN bus protocol.

Table III presents a list of the selected modules along with

their costs. It is observed that the bill of materials is 110 dollars,

which is within the range of the IVDR developed in academic

works, [14], [15], [16]. The added value of this IVDR comes by

implementing the use of a microcontroller validated in the

industry; thus, complying with the design parameters

previously established.

The IVDR prototype includes:

• Two LEDs working as operating indicators.

• A pushbutton electrically connected to a digital input

interruption of the microcontroller, to generate the definitive
TABLE II

IVDR MICROCONTROLLER COMPARISON

Development Board
Microcontroller

(0.2)

Automotive

Validation

(0.2)

SD memory SPI

Compatibility

(0.05)

of UARTs

(0.05)

Direct CAN bus

Compatibility

(0.25)

MCU Cost

(USD)

(0.25)

weighting

Arduino Mega ATMega1280 2 No 0 Yes 5 Yes 4 No 0 40 4 2.8
Raspberry PI 3 Model B 1.2GHz 64-bit quad-core

ARM Cortex-A53 CPU
3 No 0 Yes 5 Yes 1 No 0 46 4 2.4

STM32F4DISCOVERY STM32F407VGT6 32-bit

ARM Cortex® -M4
3 No 0 Yes 5 Yes 3 No 0 20 5 2.95

NXP TRK-KEA64 32-bit MCU core from

ARM’s Cortex-M class
5 Yes 5 Yes 5 Yes 2 No 0 49 4 3.375

NXP TRK-KEA128 32-bit MCU core from

ARM’s Cortex-M class
5 Yes 5 Yes 5 Yes 3 Yes 5 49 4 3.825

Tiva C Series

TM4C123G USB+CAN

Tiva TM4C123GH6PGE

ARM® Cortex™-M4-
based

5 Yes 5 Yes 5 Yes 4 Yes 5 150 2 3.725

Infineon KIT XMC43

RELAX_ECAT_V1

XMC4300-F100 5 Yes 5 Yes 5 Yes 2 Yes 5 62 3 3.475

Renesas RL78/F14 RL78/F14 16-Bit 5 Yes 5 Yes 5 Yes 2 Yes 5 275 1 3.175

TABLE III

IVDR HARDWARE MODULES

Module Reference Cost

GPS Module Ublox NEO-6M 10

SD Module microSD 2.5

microSD 16GB 7

Power Module DC-DC Buck LM2596 5

GPRS Module SIM808 20

Microcontroller NXP TRK-KEA128 50

SAEJ1962 Cable OBDII-DB9 9

Miscellaneous Cables, LEDs, fuses 5

Casing Dexson DXN500DG 1.5

Total -- 110

186 IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 2, FEBRUARY 2023

stop of the IVDR operation and to be able to extract the data

from the SD card in a safe way.

• DB9 connector for linking the IVDR with the SAE J1969

port. This type of connector is used since cables with this

configuration are commercially available.

• A switch that allows the IVDR to be de-energized.

• It has a slot to access the microSD socket.

• It has a slot to access the micro-USB port so that the

software can be updated if needed and for real time readings

with a PC.

• The size should be as small as possible, complying the

portability design requirement, considering that it does not

visually impede driving.

 In Fig. 1 the modular diagram of the electronic design is

identified, in Fig. 2 the selected components are presented

graphically. Additionally, Fig. 3 presents the final mechanical

design.

V. SOFTWARE DEVELOPMENT

As described above, the main function of the IVDR is to

connect the datalogger to the vehicle’s CAN bus. The storage

means are: store the information in a removable SD memory,

upload the data to the cloud through a GPRS (General Packet

Radio Service) module and monitor the bus in real time through

a PC. In addition to the CAN messages, it is necessary to collect

the geographical position through a GPS module. Within the

functionality of the IVDR, each of the peripherals (SD, GPRS,

PC, GPS) can be deactivated at the convenience of the user

without interrupting the operation of the IVDR.

 On the other hand, the device has different operating modes,

which have to do with how the device collects data from the

CAN bus, the operating mode can be selected by the user each

time the application is restarted. These modes of operation are:

• Sniffer Mode: reads and records every single message

that passes through the CAN bus.

• IDs Mode: applies a mask over the ID section of the

incoming messages to record the desired IDs

exclusively.

• OBDII Mode: applies a mask over the ID of the

incoming messages to read only OBDII messages,

which are usually located in ID 0x7E8. Additionally,

the desired PIDs must be selected.

• IDs and OBDII Mode: this operation mode is a

combination of the two previous modes. Allowing to

record specific CAN bus and OBDII messages.

Software development is supported on an interrupt-based

state machine because both hardware and software are required

to have control over the operation. This means that the

operation of the algorithms does not depend on a sequential or

synchronous program, but on themselves and on external

events. The code developed is scalable and has an error

verification system to have software monitoring control. The

main program and interrupt routines are:

• CAN reception interruption: messages from the CAN bus are

read and stored in a buffer. It also controls the request for data

by OBDII.

• Periodic Interrupt Timer (PIT) interruptions: there are two

interruptions of this type, one to synchronize the OBDII data

requests and another to time some functions, such as, error

handling and periodic functions.

• Serial UART (Universal Asynchronous Receiver-

Transmitter) interruptions: there are two UART

interruptions, one receives and stores to the buffer the
incoming data from the GPS module and another to store the

response of the GPRS module to the commands issued.

• IRQ (external interrupt request) interruption: it is in charge of

completely stopping the program and moving to an infinite

cycle. This to close the last open txt file on the SD memory

card and cut off GPRS communication.

• Main program routine: it initializes all microcontroller

resources and peripherals. Its function is to carry out the

asynchronous transmission of information through buffers,

either to the SD memory card, to the cloud (GPRS) or by

UART to a PC.

Fig. 4 schematizes the state machine followed by the IVDR

software; it is observed that the interruptions do not overlap. In

Fig.1. Modular electronic diagram for the IVDR.

Fig. 4. IVDR State machine.

Fig. 4. IVDR State machine.

Main Program:
Transmission of data

available in CAN and GPS
buffers to:

UART? GPRS? SD?

RX CAN Interrupt:
Storage in CAN Buffer

PIT0 Interrupt:
Writes periodical
OBDII messages

IRQ Interrupt
Total stoppage of

IVDR

RX UART0 GPS
Interrupt:

Storage in GPS
buffer

RX UART1 GPRS
Interrupt:

Receives data
from GPRS module

PIT1 Interrupt:
Timing of functions

Error verfication procedures

Fig. 2. Top view of the electronic modules and the microcontroller.

Fig. 3. Final IVDR design.

Fig. 3. Final IVDR design.

ECHEVERRY-MEJIA et al.: DESIGN AND PROTOTYPING OF TRANSFORMERLESS DC-DC 187

case of activating several interruptions at the same time, the

order of priority is applied: IRQ, UART, PIT, CAN [22].

The microcontroller software is always in an infinite loop in
the main program, waiting for an event, to transmit it

asynchronously by any of the three peripherals (SD, GPRS,

PC). In case of an external event, such as, a message on the

CAN bus or a GPS message, the corresponding interrupt is

activated, the interrupt function is executed and then the

operation returns to the main program again. All the

information flow between peripherals and the microcontroller

is done through buffers.

The four most important algorithms (see Fig. 4) developed

for the operation of the IVDR are RX CAN Interrup, RS

UART0 GPS, RS UART0 GPRS and PIT0 serial interrupt.
These algorithms are described in greater depth below.

A. CAN Reception Interrupt

Fig. 5 presents the general algorithm for the CAN reception

interrupt, whose main function is to read the messages from the

bus and store them in a buffer. The interrupt is activated when

a CAN message available, which occurs with high periodicity
since there can be messages every 200 microseconds on the bus

[17]. Said buffer is cyclical with a fixed size, but with variable

occupation that depends on the amount of data received from

the CAN bus; this buffer is traversed with the help of a pointer.

It is necessary that the size of the buffer allows significant

storage, so that it will not overflow without transmitting the

message.

The sequence of this routine is:

• When the interrupt is activated, the most relevant parameters

of the CAN message are read, which are: the ID, 8 bytes of

data and the timestamp. The latter has the functionality of

locating each message in time and is extracted from the CAN
bus hardware.

• Depending on the operation mode, the required messages are

stored in the buffer, to later be transmitted to any of the

peripherals in the main program routine; this is done using

multiple pointers that together allow to identify the state of

the buffer. It should be noted that this buffer stores CAN

frames in binary format and not ASCII (American Standard

Code for Information Interchange) to save capacity and

computing time.

B. GPS UART Serial Interrupt

To communicate the GPS NEO-6M module with the

microcontroller, only the reception channel is required. This

module upon powering up and finding a geographical position

starts transmitting frames with the NMEA (National Marines

and Electronics Association) system coding [23], from which

the GPGGA (Global positioning system fix data) protocol is

extracted. This protocol contains time, latitude, longitude, and

height above sea level. Fig. 6 presents the serial reception

interrupt routine for the GPS. The main characteristics of this

routine are described below:

• The UART hardware reads the frames received from the GPS

byte by byte, these are stored in a static buffer, different from

the CAN bus buffer, with the capacity for a single GPS

message.

• When a frame finish transmitting, a carriage return line feed

character is received; at this moment, the message identifier

is checked and if it is equivalent to “GPGGA” a flag

(msgGPS) is enabled. This flag indicates that there is a valid

frame to store in the buffer and is used by the GPS routine of

the main program to store the buffer in some peripheral.

C. GPRS UART Serial Interrupt

The selected GPRS module used for the present research can

operate under different methods, the one used for the IVDR is
the HTTP (Hypertext Transfer Protocol) GET method. The

module is controlled using AT commands via a UART channel.

Every time the module is interacted with, it generates a response

that is processed through a serial interrupt. The responses used

in this development are: "OK", "ERROR" or "200".

To use the GPRS module it is necessary to initialize the

SIM808 chip. After being initialized, it goes to the infinite cycle

of the main program and while the peripheral is operating, the

required information is transmitted to the cloud. This process is

outlined in Fig. 7 with the required AT commands and is carried

out with the following considerations:

• To continuously upload parameters to the cloud with the

Fig. 5. Flowchart of the data storage algorithm for CAN messages.

Increase CANbuff
pointer

i_canbuff++

i_canbuff=
tamcanbuff

?

Restart CANbuff
pointer

i_canbuff=1

YESNO

Write in CANbuff
ID, data, timestamp
CANbuff[i_canbuff]

Write
CANbuff

Write
CANbuff

Fig. 6. Flowchart of the serial interrupt algorithm for GPS data.

Int.
Rx UART0

GPS

Int.
Rx UART0

GPS

Initialize:
i_GPSbuff=1

Read data received by
UART0

byteGPS_RX

byteGPS_RX
= $

i_GPSbuff=1

Increase GPSbuff
pointer

i_GPSbuff++

Store data in buffer
GPSbuff

GPSbuff[i_GPSbuff]=byteGPS_RX

Last two read
bytes =\r\n?

Store name of the GPS
message

tipo_GPS=GPSbuff[1:6]

tipo_GPS
=

$GPGGA
Active: msgGPS

YES

YES

YES

NO

NO

NO

188 IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 2, FEBRUARY 2023

GET HTTP method and the GPRS module, it is necessary

to carry out 2 steps: in step 1, write the command AT +

HTTPPARA = "URL", "XXXX" where XXXX is the

domain and in the step 2, after receiving the OK response

from step 1, the command AT + HTTPACTION = 0 is

written and the response 200 is expected, meaning that the

message was received correctly.

• When a certain time is elapsed, 1 minute in this case, it

means no response was received for the last AT command,

therefore step 1 must be repeated. The time keeping

function is described in the error handling algorithms

below.

D. Error Handling Algorithms

As previously mentioned, the error handling algorithms are

synchronized and programmed in a Periodic Time Interruption

(PIT). In this interrupt the states of different flags are checked

to monitor the operation of the IVDR. These functions are

presented in Fig. 8 and are described below:

• Error function to determine if the main program stopped its

execution without it being requested by the user. In the

main program, each time that a new infinite loop starts a

flag is incremented. This function compares the current and

the previous value of said flag, if this value has not changed
in the last minute, it means that the microcontroller got

stuck in some routine, different from the main one. If this

error is generated, an alarm is activated and the execution

of the IVDR stops definitively.

• CAN bus reading problem error function: a variable is used

to save the elapsed time without reading CAN messages.

Each time one minute is elapsed, a flag is set, and the

elapsed time variable is reset. Both the flag and the variable

are reset with the arrival of each CAN bus message, in this

way non-consecutive times are not accumulated. The flag

that is set in this function is used to write a message in the

SD memory that indicates a CAN bus reading problem.

• GPRS response error function: in this function a variable is

incremented every second, said variable is reset each time
the GPRS routine gets a response from the module. This

variable accumulates the time it takes for the module to

respond. If the time is greater than 1 minute, the

transmission of the GPRS module is restarted.

• SD txt file creation tracking function: to minimize the

amount of information lost during prolonged experiments

in case of an error happening, the information collected is

split up into several files, each file containing five minutes

of experimental data. The moment the IVDR continuously

reads CAN messages, the elapsed time is stored in a

variable. After the selected time (5 min) is reached, a flag
is set that is used in the CAN bus routine to create a new

txt file in the SD memory.

E. Human-Machine Interface

In addition to software design in the IVDR, it is necessary to

develop programs that allow data manipulation on a computer.

For this, various human-machine interfaces are developed in

MATLAB and LabVIEW depending on the IVDR peripherals

activated:

• PC: this program allows to monitor the messages sent from

the IVDR buffer to the PC in real time. Likewise, it creates

a file where it stores the messages received through the

serial port in the order they were received.

• SD: this program allows to integrate the data present in the

separate files saved in the SD memory card during the

IVDR operation.

Fig. 7. GPRS module cloud data transmission flowchart algorithm.

F_GPRS
active?

YES

Transmit thru UART1
AT+HTTPPARA=\“URL”,

”http://DATOS_PARA_NUBE ”

GPRS

GPRS

NO

msgGPRS_RX
=200 or ERROR

?

Transmit thru UART1
AT+HTTPACTION=0

msgGPRS_RX
= ERROR

?

Transmit thru UART1
AT+HTTPPARA=\“URL”,

”http://DATOS_PARA_NUBE ”

msgGPRS_RX
= OK

?

Initialize:
HTTPpaso=1

HTTPpaso
=1
?

HTTPpaso
=2
?

HTTPpaso=2
msgGPRS_RX=0
NOmsgGPRS=0

NOmsgGPRS
> 60 seg

?

Transmit thru UART1
AT+HTTPPARA=\“URL”,

”http://DATOS_PARA_NUBE ”

HTTPpaso=2
msgGPRS_RX=0
NOmsgGPRS=0

HTTPpaso=1
msgGPRS_RX=0
NOmsgGPRS=0

YES

YES

YES

YES

NO

NO

NO

NO

HTTPpaso=2
msgGPRS_RX=0
NOmsgGPRS=0

Fig. 8. Error handling algorithms flowchart.

Int.
PIT1

Tempo-Err

Int.
PIT1

Tempo-Err

YES

NO

F_SD
active?

YESNO

Active: newSDfile

YESNO

error_infi =
error_infi_ant

Initialize:
error_infi_ant=0
cont_error_infi=1
time_msgCANoff=0
time_SDfile=0

error_infi_ant=
error_infi

Increase
cont_error_infi++

Restart
cont_error_infi=1 cont_error_infi

>
6 (60seg)

Alarm
Infinite cycle error

Total Stoppage of IVDR

END

NO

YES

F_GPRS
active?

YESNO
Increase every second

NOmsgGPRS

Activate
1_msg_CAN

YES NO

msg_CAN
active?

Acumulate time
time_SDfile

time_SDfile
=5min?

YESNO

Acumulate time
time_msgCANoff

time_SDfile=0time_msgCANoff=0

time_msgCANoff
=1min?

time_msgCANoff=0

ECHEVERRY-MEJIA et al.: DESIGN AND PROTOTYPING OF TRANSFORMERLESS DC-DC 189

• GPRS: for this peripheral it is necessary to develop a

program that allows storing the IVDR information in the

cloud. In the present research Google Cloud was used.

VI. EXPERIMENTS AND VALIDATION

As part of the validation of the IVDR operation, two tests were

performed:

1. Data acquisition comparison between the IVDR and an

industrial datalogger.

2. IVDR data loss analysis.

3. CAN bus periodic message ID decoding methodology.

A. IVDR vs NI9862 Validation

For this validation test, the performance of the IVDR must

be compared against an industry validated device, in this case

the NI cRIO-9063 chassis plus NI9862 data acquisition card.

For this purpose, an acceleration performance test following

SAE J1491 standard [24] with five repetitions was done. In each

test simultaneous data acquisition is carried out with both the

IVDR and the NI9862.

During these experiments the IVDR is used in IDs and

OBDII mode; on the other hand, the NI device is used in sniffer

mode and afterwards with the help of a LabVIEW program the

OBDII data is extracted. All experiments were performed with

a Jeep Patriot, at sea level on the Mexican Pacific coast, on a

street with an approximate slope of zero degrees and following

all the requirements of the SAE standard for acceleration

performance tests.

Fig. 9 shows the comparison of the linear speed reading with

the two instruments, the NI and the IVDR, for the first

experiment. The other four repetitions present a similar

behavior. The similarity between the information acquired with

both instruments can be observed. Table IV presents the

comparison between the resolution of the instruments as

required by the SAE standard for acceleration performance [24]

and the resolution provided by the IVDR, clearly demonstrating

that it can fulfill the requirements set by the standard.

To prove the similarity of the results obtained, a statistical

analysis consisting of three steps is carried out [25]. In the first

step, a Kolmogorov-Smirnov normality test is performed on the

data from each device, to determine whether to use parametric

or non-parametric statistics. The numeric results of the

normality test are presented in Table V. It is observed that the

hypothesis (H) in both cases has a value of 1, indicating that

they do not have normal behavior. In turn, the p-value is much

less than 0.05 (5%), indicating that the null hypothesis, which

proposes that the data present normal behavior is rejected.

Therefore, the alternative hypothesis is accepted indicating the

need to use non-parametric statistics for the data analysis.

The second step is to perform the non-parametric analysis,

using the Wilcoxon signed-rank test for two same sized

dependent samples. Table VI shows the result for each

repetition, it can be observed that the means are equal for each

test since they present a p-value of 1, much higher than the

alpha of 0.05. This indicates that for the 5 repetitions, the null

hypothesis (h=0) is accepted, which proposes that the means of

the two populations are equal, with no significant data

difference. Also, the average for the different devices is exactly

the same because they are reading the same data. If these

averages had significantly different results, it would imply that

there is information loss in one of the devices.

The last step is to perform a Pearson correlation test on the

data obtained in each repetition. For all cases, a result of 1 was

obtained both in speed and time. Thus, having a high positive

correlation, which implies a high similarity in the form of the

responses.

B. IVDR Data loss Analysis

For the data loss analysis, one hundred and fifty tests were

carried out with an approximate duration of 18 minutes per test.

Fig. 9. Linear speed comparison from CAN with NI and IVDR.

TABLE IV

IVDR RESOLUTION VS SAE STANDARD

Variable Unit
SAE

Standard
IVDR-CAN

Time s 0.1 0.01

Linear Speed km/hr 0.4 0.0078

Engine Speed RPM 25 0.25

TABLE V

KOLMOGOROV –SMIRNOV NORMALITY TEST FOR THE NI AND IVDR DEVICE

DATA

Kolmogorov-Smirnov NI-CAN IVDR-CAN

Median 68.69 68.83

Standard Deviation 29.35 29.39

H 1 1

P 2.01E-06 1.85E-06

TABLE VI

WILCOXON SIGNED-RANK TEST FOR NI VS IVDR

Wilcoxon test P1 P2 P3 P4 P5

H 0 0 0 0 0

P 1 1 1 1 1

Mean NI-CAN 68.69 72.61 72.77 72.46 71.45

Mean IVDR-CAN 68.69 72.61 72.77 72.46 71.45

TABLE VII

IDS CAPTURED BY THE IVDR DURING DATA LOSS TESTS

ID Sampling rate (seg) ID Protocol

513 0.01 ID CANbus

517 0.01 ID CANbus

1056 0.1 ID CANbus

1060 0.1 ID CANbus

1200 0.01 ID CANbus

2024 0.03 ID OBDII

190 IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 2, FEBRUARY 2023

In each test a fixed route of five kilometers is traveled in the

city of Chía, Colombia; driving a Ford Fiesta. With the help of

the IVDR, in each test the acquisition of the IDs mentioned in

Table VII are stored in an SD memory for later analysis.

To identify the amount of data lost, the average sampling time
and the standard deviation of each observation are calculated

for each ID. Subsequently, the sampling time of each

observation is compared with the average sampling time for its

ID plus an uncertainty given by the standard deviation. Any

sampling outside the mentioned range is considered data loss.

Table VIII shows the results of this test, indicating that

according to the established definition of missing data, the

IVDR presents no data loss.

C. CAN Bus Periodic Message ID Decoding

The procedure to find specific IDs for a sensor of the vehicle

requires that the IVDR operate in sniffer mode. The

identification of each ID requires different tests to be carried

out on the vehicle, collecting the data with the IVDR, to be

analyzed later using reverse engineering.

The procedure to find the odometer ID is presented below,

whose procedure can be repeated to find other IDs.

1. Read the CAN bus messages with the engine running,

without movement. In this case, all data fields and IDs that

present changes must be discarded.

2. Read the bus with the engine off, the vehicle is pushed

forward a few meters. All data fields and IDs that do not

change are discarded.

3. A test with known distance is run and the remaining IDs

from the previous step are analyzed. In this test

approximately three hundred and fifty meters are traversed.

4. From experience it is known that the odometer ID is usually

an incremental counter. Fig. 10 shows the ID that presents

this behavior for the previous test.

5. In Fig. 10 it can be seen that the byte is an incremental

counter that goes from 0 to 253 and that this counter was

reset 6.9. Meaning that if the test run is 350 meters, each

counter reset is equivalent to 50.72. Rounding off, 0.2

meters are traveled for each counter increment, or 50.8

meters each reset. With this appreciation, the distance in

meters of said test is plotted in Fig. 11.

6. Finally, the previous steps must be repeated several times

with different routes, to ensure a proper decoding for the

variable.

VII. CONCLUSIONS

In this work, an IVDR was developed complying with the

initially proposed design requirements. This device, presents

no data loss and can be easily used for testing purposes,

allowing it to be massively distributed for IoT and Big Data

applications.

A series of tests were applied over the developed IVDR to

evaluate its performance, comparing it against an industry

validated datalogger. A similar behavior is observed between

both devices, which is statistically proved by having a high
positive Pearson correlation. Also, with help of the Wilcoxon

signed-rank test for mean equality in dependent samples, it is

proven that the means of the two populations are not

significantly different from a statistics point of view.

Likewise, the IVDR has been used in different research,

highlighting the use to obtain the typical driving cycle for the

city of Chía, Colombia, operating for more than 14 months and

10,000 kilometers. During the present work, 150 tests were run,

demonstrating that the device did not present any significant

data loss events and has the capability to adapt for multiple

testing operations. An additional test was included to showcase
a potential application for the IVDR. The methodology that

permits the identification and decoding of the odometer ID can

be extrapolated to any other variable present on the CAN bus.

Finally, the authors propose as future work to use this device

as instrumentation equipment for the extraction of TDCs,

methodologies to measure fuel consumption and greenhouse gas

emissions in light commercial vehicles.

ACKNOWLEDGMENTS

We would like to thank Tecnológico de Monterrey Campus

Estado de México and Universidad de La Sabana for their

support in the development of this research.

TABLE VIII

DATA LOSS TESTS RESULTS

ID
Quantity of

observations

Average

sampling

rate (seg)

Standard

deviation

(seg)

Lost data

513 13540796 0.010043825 0.00271150214 0
517 13540877 0.010043764 0.00270993422 0
1056 1353915 0.100440092 0.00915493517 0
1060 1353930 0.100438835 0.00914795529 0
1200 8095714 0.010035344 0.00253127891 0
2024 4063321 0.030107916 0.00455430137 0

Fig. 10. Odometer ID data field analysis.

Fig. 11. Distance traveled during Odometer ID decoding test.

ECHEVERRY-MEJIA et al.: DESIGN AND PROTOTYPING OF TRANSFORMERLESS DC-DC 191

REFERENCES

[1] H. Weber, J. Krings, J. Seyfferth, H. Güthner and J. Neuhausen, "Digital

Auto Report 2019," 2019.

[2] A. Chidester, J. Hinch and T. Roston, "Real World Experience With

Event Data Recorders," National Highway Traffic Safety, 2001.

[3] L. Moreira-Matias and H. Farah, "On Developing a Driver Identification

Methodology Using In-Vehicle Data Recorders," IEEE Transactions on

Intelligent Transportation Systems, vol. 18, no. 9, pp. 2387-2396, 2017.

[4] V. Gitelma, S. B. E. Doveh, F. Pesahov, R. Carmel and S. Morik,

"Exploring relationships between driving events identified by in-vehicle

data recorders, infrastructure characteristics and road crashes,"

Transportation Research Part C: Emerging Technologies, vol. 91, pp.

156-175, 2018.

[5] G. Albert, T. Lotan, T. Toledo, E. Grimberg and M. Lasebnik, "Are

young drivers as careful as they deem? In vehicle data recorders and self

reports evaluations," Eur. Transp. Res. Rev., vol. 6, pp. 469-476, 2014.

[6] J. Echeverry, Metodología Para Reducir El Gasto De Combustible En

Rutas Fijas Mediante El Uso De Hábitos De Conducción Eficiente,

Empleando Un sistema IVDR Y Ciclos De Conducción, Estado de

México: Instituto Tecnológico y de Estudios Superiores de Monterrey,

2018.

[7] J. Huertas, J. Díaz, D. Cordero and K. Cedillo, "A new methodology to

determine typical driving cycles for the design of vehicles power trains,"

Int J Interact Des Manuf, 2017.

[8] S. Kamble, T. Mathew and G. Sharma, "Development of real-world

driving cycle: Case study of Pune, India," Transportation Research Part

D, pp. 132-140, 2009.

[9] D. Cordero and J. Huertas, "Metodología para minimizar el consumo de

combustible en autobuses, que sirven rutas fijas, mediante la

reconfiguración del tren motriz," Instituto Tecnológico y de Estudios

Superiores de Monterrey, Toluca, 2015.

[10] G. Toledo and Y. Shiftan, "Can feedback from in-vehicle data recorders

improve driver behavior and reduce fuel consumption?," Transportation

Research Part A: Policy and Practice, vol. 94, pp. 194-204, 2016.

[11] Society of Automotive Engineers (SAE), On-Board Diagnostic

Connector, J1962, 2016.

[12] J. Echeverry, V. Vasquez, J. Aguirre and D. Contreras, "Low Cost

Obtainment of Vehicle Performance Curves and Values Experimentally

by Means of the OBD2 Port," SAE Technical Paper, 2015.

[13] S. Birrell and M. Fowkes, "Glance behaviours when using an in-vehicle

smart driving aid: A real-world, on-road driving study," Transportation

Research Part F, 2014.

[14] B. Sung-hyun and J. Jong-Wook, "Implementation of integrated OBD-II

connector with external network," Information Systems, 2013.

[15] K. Smith and J. Miller, "OBDII Data Logger Design for Large-Scale

Deployments," in Proceedings of the 16th International IEEE Annual

Conference on Intelligent Transportation Systems, 2013.

[16] S. Garcia, "System for the realization of advanced mobility studies based

on driver, cabin and vehicle monitoring," IEEE Latin America

Transactions, vol. 100, no. 1, 2020.

[17] ISO, ISO 15765-4:2016. Road vehicles — Diagnostic communication

over Controller Area Network (DoCAN) — Part 4: Requirements for

emissions-related systems, 2005.

[18] M. D. Natale, H. Zeng, P. Giusto and A. Ghosal, Understanding and

Using the Controller Area Network Communication Protocol: Theory

and Practice, Springer, 2012.

[19] B. Kai, "1.3.1 CAN Bus," in EMC and Functional Safety of Automotive

Electronics, Institution of Engineering and Technology., 2019.

[20] ISO, ISO 15031–5:2015. Road vehicles — Communication between

vehicle and external equipment for emissions-related diagnostics — Part

5: Emissions-related diagnostic services., 2005.

[21] Society of Automotive Engineers (SAE), OBD II Scan Tool -- Equivalent

to ISO/DIS 15031–4, J1978, 2011.

[22] SIMCom, SIM800 Series AT Command Manual, 2015.

[23] SiRF Technology Inc., NMEA Reference Manual, San Jose, California,

USA, 2007.

[24] Society of Automotive Engineers (SAE), Vehicle Acceleration

Measurment, J1491, 2006.

[25] V. V. Lopez, J. E. Mejia and D. C. Dominguez, "Design and Statistical

Validation of Spark Ignition Engine Electronic Control Unit for

Hardware-in-the-Loop Testing," IEEE Latin America Transactions, vol.

15, no. 8, pp. 1376-1383, 2017.

Julian Mauricio Echeverry Mejía. Dean

at Tecnológico de Monterrey - Escuela de
Ingeniería y Ciencias, Aguascalientes Campus,
Mexico. Prior of that, he was a professor and
chair of mechanical engineering at the
Universidad de La Sabana in Colombia. He

received his Ph.D. degree in engineering
sciences (2018) and his M.Sc. degree in
automotive engineering (2010) from

Tecnológico de Monterrey in Mexico. Julian is electronic engineer
from Universidad Autonoma de Manizales (2006 Colombia). Among
his lines of research are the following: vehicle dynamics, automotive
communication protocols, testing engineering, and biomedical
equipment design.

Felipe Arenas Uribe. Mechanical

Engineering student from Universidad de La
Sabana. Member of the Human Centered
Design center, where he has focused on
working in intelligent transportation systems.
Captain of the Unisabana Herons EV since
2020, team with which he has participated in 4
Shell Eco-Marathon Americas events. His
research interests include vehicle dynamics,

instrumentation, and control.

Diego Ernesto Contreras Domínguez.
Mechatronics Engineer (2011) and Ph.D. of

Engineering Sciences (2018) from the
Tecnologico de Monterrey, Mexico. He is
currently a professor in the mechanics
department at the Tecnológico de Monterrey
Campus Estado de México, lecturing on
automotive topics. His research interests
include automotive electronics and control,

vehicle dynamics, and automotive instrumentation.

Virgilio Vásquez López. Electrical

Mechanical Engineer from the Universidad
Veracruzana, Veracruz Mexico and completed
his master's and doctoral studies at the Center
for Advanced Studies of the Instituto
Politecnico Nacional (CINVESTAV-IPN),
Mexico City in 1997 and 2005, respectively. He
is currently a full-time professor in the
Mechatronics department of the Tecnológico de

Monterrey Campus Estado de México. His research interest includes
mechatronics instrumentation, automation, and control theory.

