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Abstract— The function of the back, hip, knee, ankle and other 

orthopedic alterations of the human body can be analyzed through 

plantar pressure distribution. The development of Clinical Decision 

Support Systems (CDSS) can handle the uncertainties present in 

biological data using different Artificial Intelligence techniques to 

obtain accurate and easy to use systems. This paper presents the 

application of a Fuzzy Cognitive Map (FCM) formulation, for 

knowledge extraction in the classification of human plantar foot 

alterations, with a relatively small and transparent model. The FCM 

is trained using the Bacterial Search Optimization Algorithm 

(BFOA). One hundred and twenty-five volunteer subjects (aged 20-

68 years) participated in the study. Classification of the foot into 

normal (n=31), flat (n=32), cavus type III (n=31) and cavus type IV 

(n=31) to train the system was performed by specialized physicians. 

The test was performed by walking on a FreeMed® platform. The 

proposed method shows an accuracy rate of about 89% in the 

classification task and allows extracting information related to the 

important factors that the system considers to make a decision. 

 

Index Terms— Clinical decision support systems, bacterial 

foraging optimization algorithm, fuzzy cognitive maps, 

optimization algorithms, plantar data analysis. 

I. INTRODUCTION 

 urrently there are large amounts of biomedical data with 

potential application in improving the quality of people 

life, since using effective and efficient computational 

knowledge systems, it is possible to include treatment 

recommendations, and prescribe preventive health tasks. But 

due to its complex nature, comprehensive techniques are 

required to model the relationship between data elements [1]–

[3]. 
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people life, since using effective and efficient computational 

knowledge systems, it is possible to include treatment 

recommendations, and prescribe preventive health tasks. But 

due to its complex nature, comprehensive techniques are 

required to model the relationship between data elements [1]–

[3]. 

In the biomedical field, plantar pressure through static and 

dynamic measurements allows understanding the mechanical 

behavior of the human body to detect, monitor and treat many 

other diseases that are reflected in an abnormal distribution of 

plantar pressure. Abnormal foot posture (flat foot or cavus foot) 

has been associated with lower limb injuries, such as 

patellofemoral joint pain, medial tibial stress syndrome, 

Achilles tendinopathy, patellar tendinopathy, plantar fasciitis, 

medial midfoot arthritis, and posterior tibial tendon dysfunction 

[4]. 

Devices to measure plantar pressure under dynamic and static 

conditions may be divided into two groups: baropodometric 

platforms and instrumented insoles, which provide much 

information to identify patterns and correlate with medical 

conditions [5].  

Specialized physicians are in charge of analyzing orthopedic 

alterations of the foot, but assessing the type of alteration based 

on the acquired data is a subjective judgment, being evident the 

development of classification algorithms [6]. However, this 

analysis requires easily interpretable systems with efficient 

techniques to deal with the inaccuracy, vagueness, and 

uncertainty present in medical and biological data due to the 

interpretation of information [7], [8].  

Different studies have been reported in this field [9]–[11], Chae 

et al. have developed a deep learning model to classify foot 

deformity types according to image pressure data and numerical 

data [6]. Likewise, using one-dimensional convolutional neural 

networks and plantar pressure images obtained with 

instrumented insoles, they obtained a classification of normal, 

cavus and flat feet of 99.26% [12]. Li et al. proposed a Deep 

Neural Network model called resident network-based 

conditional generative adversarial nets (RNcGAN) to classify 

normal, flat, and talipes equinovarus feet, based on images 

achieving an accuracy of 95.17% [13].  

Traditional classifiers, such as neural networks, have prediction 

rates greater than 90%, but they are considered black boxes, 

being a limitation because it makes the interpretation of the 

results difficult [14], since medical ethics require physicians to 

understand the fundamental inner workings of the devices in the 
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environment. [15]. Fuzzy cognitive maps (FCM), considered as 

an effective and robust artificial intelligence technique for 

modeling complex systems, have proven to overcome these 

difficulties, being a useful tool for designing knowledge-based 

systems that behave like human reasoning, giving 

interpretability to their network [16]. An FCM allows relating 

input concepts to output concepts by means of a graph that, 

although similar to that of an ANN, does not make use of 

complex activation functions [17]. Different proposals have 

been reported for the computation of the Fuzzy Cognitive Maps 

rule [18]–[20], in addition to being used for modeling complex 

systems, including medical decision support systems [8], [21]–

[24]. Several authors have reported work with high accuracy 

rates using FCM [25], [26], such as the classification of flat and 

cavus foot using an FCM trained by Genetic Algorithm, 

reported by [27], reaching an accuracy of 91%.  

This study applies an FCM formulation to extract knowledge 

about the classification of human plantar foot alterations. If the 

behavior of the FCM to obtain an expected result is known, it is 

possible to extract the most relevant factors that the algorithm 

considered to make the decision. The study supports the 

development of algorithms that not only have high-performance 

rates, but also transparent, to provide efficient feedback to the 

physician. The FCM is trained using the Bacterial Foraging 

Optimization Algorithm (BFOA) and historical data from 125 

participating subjects with normal, flat, cavus type 3 and cavus 

type 4 foot, obtained for the presented study and classified by 

qualified physicians. The classification result was compared 

with previous authors and the classification performed by a 

group of physicians. Proposed methodology shows a better 

performance, with a relatively small and potentially transparent 

model. 

II. DATA PREPARATION 

A. Dataset 

Foot plantar pressure data were acquired from 125 subjects 

with normal (n = 31), cavus type 3 (n = 31), cavus type 4 (n = 

31) and flat feet (n = 32) for use in the classification system. 

The subjects participating in this study were 44% female and 

56% male. All participants were informed of the purposes of 

the study and informed consent was written. The ethical 

standards established in the Declaration of Helsinki were 

considered. Additionally, the project with number 

SIP20196297 was approved by Instituto Politécnico Nacional 

(IPN) of México, which requires fulfill ethical requirements 

agreement. The inclusion criteria were men and woman with 

age between 20 to 68 years-old, height between 150 to 180 cm, 

weight between 46.4 to 103 kg, with a body mass index (BMI) 

between 18.5 and 24.9, a range of participants within normal 

healthy weight values. Exclusion criteria were people using 

support accessories (crutches, canes, etc.), lower extremity or 

foot surgeries, pregnancy, obesity, skeletal pathologies 

diagnosed in the lower limbs (referred by the participants) or an 

altered gait due to another disease.   

The baropodographic platform was provided by the PIEDICA 

center in Mexico City, which has FreeMed® platforms with an 

XY resolution of 2.5 dpi and an 8-bit Z resolution. During the 

experiment the participants recorded stepping cycles, each one 

with three steps taken continuously. The participants walked on 

a 6-meter surface with no slope, where the electronic 

acquisition platform was at the center of the walking surface. In 

this way, 3 trials per participant were acquired, and the 

percentage load data per unit area of interest were averaged, to 

obtain an unbiased measure representing the participant's 

plantar pressure distribution during normal walking. 

B. Fuzzy Cognitive Map (FCM) 

Kosko proposed the FCM in 1986 to describe the 

relationships between the main variables (concepts) of a system 

and its behavior [28]. These values are represented by concepts 

(C) interconnected by weights (Wji) that denote an 

increase/decrease of cause and effect in the concepts. A positive 

relationship (Wji) exists in the concepts (C) when an increase in 

one concept causes an increase in the other concept. Otherwise, 
a negative relationship (Wji) exists when a particular concept 

causes a decrease in the next concept. When there is no 

relationship in the concepts, it is denoted as 0 [14], [29], [30]. 

To compute the state vector of the FCM in the next iteration, 

(1) is used.  

𝑥𝑖(t) = 𝑓(∑ 𝑥𝑗(𝑡 − 1)𝑛
𝑗=1
𝑗≠𝑖

𝑊𝑗𝑖)                        (1) 

 

Where 𝑥𝑖(t) is the current state of the concepts, 𝑊𝑗𝑖 is the 

weight matrix representing the relationship in the concepts, 

𝑥𝑗(𝑡 − 1) is the value of concept Cj at time t-1 and 𝑓 is the 

threshold function (2) used to keep the activation values in the 

range [0-1] [31]. 

 𝑓 =
1

1+𝑒−𝜆𝑥                                     (2)        

 

Where λ defines the steepness of the function and x refers to 
(1). 

Self-connections are not allowed in the original Kosko model, 

but to use the self-memory feature, this condition was removed 

[31]. Similar formulation is proposed by [18], in which the 

previous value of each concept is considered. Thus, the new 

concept value is calculated through the multiplication of a 

portion to the state vector and the weight matrix, and the 

addition of a portion of the previous concept value. This 

formulation is represented by (3) [18]. 

 

𝑥𝑖(t) = 𝑓[𝑘1 ∑ 𝑥𝑗(𝑡 − 1)𝑛
𝑗=1
𝑗≠𝑖

𝑊𝑗𝑖 + 𝑘2𝑥𝑖(𝑡 − 1)]       (3) 

 

Where k1 expresses the [0-1] influence of the new value on the 

interconnected concepts, k2 is the [0-1] portion of the previous 

concept considered and 𝑥𝑖(𝑡 − 1) are the values of the Ci 

concept at time t-1. Initially, k1 is set with a higher value, and 
k2 is set with a lower value, but during the FCM training process 

both parameters vary depending on the simulated system [18]. 

The inference rules are applied in the number of iteration 

needed until any of the stopping criteria is satisfied [32]. These 

criteria are: a) when the FCM simulation reaches a fixed-point 

attractor, the system is at an equilibrium point; b) the FCM 

simulation is at a limited cycle when a number of states behave 
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with a certain pattern; and finally, c) the FCM simulation may 

have a chaotic behavior. In either approach, the weight matrix 

will be based on expert knowledge or computed by learning 

algorithms and historical data [33], [34]. The most relevant 

approaches are Hebbian-based, population-based and hybrid 
learning. Hebbian-based methods consider the modified 

Hebbian law in the unsupervised learning process, adjusting the 

initial weights given by the experts in each iteration until the 

desired value is reached [35], [36]. Population-based algorithms 

substitute expert knowledge using optimization algorithms and 

historical input data. In the supervised process, the system is 

trained as a neural network until the minimum or maximum 

value of a cost function is reached [33], [37]. Hybrid approaches 

combine both types of learning to improve system performance 

[33]. 

C. Bacterial Foraging Optimization Algorithm (BFOA) 

BFOA was proposed by Kevin Passino (2002) to solve 

numerical optimization problems [38]. This technique is based 

on mimicking the foraging behavior of E. coli bacteria and has 

demonstrated competitive performance against well-known 

nature inspired optimization algorithms [39], [40]. The key idea 

of BFOA is the application of group foraging strategy of a 
swarm of Escherichia coli bacteria to optimize a multi-optimal 

function. The bacteria forage for nutrients in a way that 

maximizes the energy obtained per unit time. There are four 

main phases in BFOA [41], [42]: 

Chemotaxis: This process simulates the movements of an E. 

coli cell through swimming and tumbling via flagella. A 

bacterium may swim for a period in the same direction or it may 

tumble, and alternate between these two modes of operation 

throughout its life. In computational chemotaxis, the movement 

of bacterium may be represented by (4). 

𝜃𝑖(j + 1, k, l) =  𝜃𝑖(j, k, l) + c(i)  =
∆(i)

√∆𝑇(i)∗∆(i)
          (4) 

Where ∆ is a vector in the random direction whose elements are 

in [-1,1], j-th is the chemotactic step, k-th is the reproduction 

step, l-th is the elimination-dispersal step, θi(j,k,l) is the i-th 

bacterium at j-th chemotactic and c(i) is the size of the step. 

Swarming: The cell with the best environment sends signal to 

attract others, forming a swarm.  

Reproduction: Less healthy bacteria die, while the healthier 

bacteria divide asexually into two bacteria. These are placed in 

the same location. This keeps the size of the swarm constant. 

Elimination and dispersal: some bacteria are randomly 

liquidated with a very small probability, while new 

replacements are randomly initialized in the search space. 

III. MATERIALS AND METHODS  

The use of each resolution point as a concept in the FCM 
makes the graph complex. To avoid this condition, the division 

of the foot surface as reported with a minor modification [1] 

was used. In the original proposal, the authors divide the foot 

surface into 14 regions as shown in Fig. 1(a). Data from T2 to 

T5 were combined, considering that the device used does not 

provide information in the individual regions, the combined 

value provided is denoted by TM. This change generates a 

smaller division of the foot surface into only 11 regions (Fig. 

1(b)).  

 
 

Fig. 1. Main regions on the foot surface: (a) Proposed by [1] where five regions 

to represent the toes from 1st to 5th (T1–T5), five regions to represent the 

metatarsal joint from 1st to 5th (M1–M5), and the one region for: the lateral 

midfoot (LM), the medial midfoot (MM), the lateral heel (LH), and the medial 

heel (MH). (b) this study, considering the information provided by the device. 
 

The system is based on five stages. In the initial stage, plantar 

pressure data are acquired by the electronic platform, storage, 

feature extraction, processing, and the final stage provides foot 

type classification.  

The value of each region defined in the input stage is taken as 

the percentage load value for each region of the foot surface, 

which was normalized according to the unit using the weight of 

each patient, to set each value in the range from 0 to 1. 
Considering the system variables, the state vector consists of 11 

input concepts and 1 output concept. The initial values of the 

input concepts are the plantar value of each patient, and the 

initial value of the output concept is set to 0.5 (Fig. 2). This 

value was defined considering the middle of the range handled 

by the FCM theory. 

In the processing stage, the input concepts are assumed to have 

an external input with their own weight as described in [18]. 

Allowing the input variables to remain unchanged, but each 

auxiliary concept (representing a region of interest of the 

plantar surface) may be related to each other to represent the 

behavior of the system, so that all auxiliary concepts (AC) are 
interconnected. (Fig.3). All AC are set to 0.5 initial value. 

During the experimental phase, the FCM formulation (3) 

showed that the parameter k1 indicating the influence of the new 

value on the interconnected concepts had a value close to 1, so 

this parameter is eliminated and only a part of the value of the 

past concept is considered, according to following expression: 

 

𝑥𝑖(t) = 𝑓[∑ 𝑥𝑗(𝑡 − 1)𝑛
𝑗=1
𝑗≠𝑖

𝑊𝑗𝑖 + 𝑘 (𝑥𝑖(𝑡 − 1))]            (5) 

Where k is the part between 0 to 1of the previous concept that 

is considered to calculate the values of the new concept, 

𝑥𝑖(𝑡 − 1) is the value of the concept Ci at time 𝑡 − 1,  𝑊𝑗𝑖 is the 

weight matrix, 𝑥𝑗(𝑡 − 1) is the value of the concept Cj at time 

t-1 and f is the threshold function (2).  
 

 
Fig. 2. Encoding schema of concepts. 
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Fig. 3. Graph of the proposed FCM model. External circles mean concepts, 

internal circles mean auxiliary concepts, and circle in center is the output 

concept. The arrows represent weighted connections.  

 

Model was evaluated with the bivalent and trivalent threshold 

functions, but better classification results were obtained with 

the sigmoid function. Classification results with other threshold 

functions were not considered in this study, since the objective 

is to show how FCMs can classify by obtaining potentially 
transparent systems. To compute the weight matrix 

interconnecting the concepts and the steepness parameter λ in 

(2) of the threshold function, a BFOA is used. 

The algorithm used has a bacterium representation in which 

each one is formed by 132 values that compose the FCM weight 

matrix, a value for the steepness parameter in (2), the iteration 

number and the constant k in (5). The optimization algorithm in 

each iteration tries to find the fittest values to reduce the error 

function in (6). The algorithm was implemented in C++ using 

Visual Studio IDE.  

 

𝐸𝑟𝑟𝑜𝑟 = ∑  𝑎𝑏𝑠(𝐴𝑖(𝑡)𝑛
𝑖=1 − 𝐴𝑗

𝑃(𝑡)) +  𝑎𝑏𝑠(𝑆𝐸(𝑡))              (6) 

 

where n is the number of training examples, Ai(𝑡) is the 

expected output concept, 𝐴𝑗
𝑃(𝑡) is the value of the proposed 

BFOA-FCM concept and 𝑆𝐸(𝑡) is the model stabilization error 

until a fixed-point attractor is reached, where tolerance 

threshold ε used is 0.01, which means that when two 

consecutive values (𝑡, 𝑡 + 1) differ by less than ε, it is 

considered fixed. This value was obtained considering values 

between [0.01 to 0.1]. 

 
TABLE I 

SET-UP VALUES FOR THE BACTERIAL FORAGING OPTIMIZATION 

ALGORITHM (BFOA) 

Parameter Values Final Value 

Population size 30.0 30.0 

Number of splits 10-20 15.0 

Step size 0.01-0.5 0.3 

Number of elimination-dispersal events 15-50 20.0 

Number of reproduction steps 5-50 10.0 

Number of chemotactic steps 10-40 20.0 

Swim length 5-20 10.0 

Eliminate probability 0.001-0.1 0.01 

Depth of the attractant 1.0-10.0 5.0 

Width of the attractant signal 1.0-10.0 5.0 

Height of the repellant effect 1.0-10.0 5.0 

Width of the repellant 1.0-20 10.0 

 

The error function is satisfied, if the stability of the system and 

the desired output value is very close to the proposed value 

(±0.01), the values are considered as an acceptable solution; 

otherwise, the algorithm calculates new parameters for 
evaluation. The BFOA configuration values are shown in Table 

I.  

In the output stage, to show the result of the foot type 

classification, a binary encoding is considered, so the output is 

1 when the alteration belongs to the class, or 0 when it does not 

belong to the class. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION  

A. Performance of the FCM Model 

Four FCM models were implemented to obtain a model 

representing each type of alteration considered. The study 

included plantar pressure data from 125 subjects with normal 

(n=31), cavus type 3 (n=31), cavus type 4 (n=31), and flat foot 

(n=32). The proposed model is able to differentiate between 

what is a specific alteration and what is not.  

Graphically, images of alterations considered in this study has 

the structure shown in Fig. 4 (a-d). The grayscale images in Fig. 

4 (e-h) are the views considering the main regions on foot 
surface. It is clear to note the differences between types. 

Numerical values of initial state concept vector are summarized 

in Table II (T1-LH).  

Data were normalized to the subject’s weight to obtain each 

data in a range from 1 to 0. A 5-fold cross-validation was 

performed on the experiment to obtain more consistent results. 

The type of alteration was coded to handle it in a computer 

program. Normal foot is treated as 1, flat foot as 2, cavus foot 

type 3 as 3, and cavus foot type 4 as 4 (Table II).  The weight 

matrices required by the proposed model and produced by 

BFOA have a density of 24.95%, which means that 75.05% was 
not used in all possible connections, to obtain a simpler graph. 

The model representing each alteration has a different weight 

matrix, which define the behavior of each system. 

During the FCM simulation, the relationship of the concepts 

produces a behavior between the areas of interest, which change 

until the FCM simulation reaches a fixed-point attractor. 

 

(a)  (b)  (c)  (d)  

(e) (f) (g) (h)  

Fig. 4. Shape of the foot surface. (a) Normal foot. (b) Flat foot. (c) Cavus foot 

type 3. (d) Cavus foot type 4. Main regions on the surface of the foot. (e) Normal 

foot. (f) Flat foot. (g) Cavus foot type 3. (h) Cavus foot type 4. 
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This different behavior for each model allows knowing which 

areas of interest were considered to converge to the expected 

result at the time of the simulation, as shown in Fig. 5. This 

figure shows the behavior of the system when the alteration is 

present and when it is not present. In the classification results, 
the FCM simulation reached a fixed-point attractor considering 

a tolerance threshold ε = 0.01. Fig. 6 shows the stabilization 

behavior of the output concepts for the alterations of randomly 

chosen subjects from fold 1. For each alteration, it is shown how 

the system responds, to classify a particular case against the 

remaining ones. The system stabilizes the simulation at 0 (no 

alteration) or 1 (alteration exist) before 12 iterations in all cases. 
Once stability is reached, it allows to obtain the expected result 

and to compare the behavior between concepts. 

 

TABLE II 

INITIAL STATE CONCEPT VECTOR 

Alteration Normalized Values 

ID T1 TM M1 M2 M3 M4 M5 MM LM MH LH AC Cout 

C0.1 C0.2 C0.3 C0.4 C0.5 C0.6 C0.7 C0.8 C0.9 C0.10 C0.11 C1-11 C12 

1 0.142 0.049 0.065 0.079 0.109 0.100 0.049 0.023 0.050 0.204 0.120 0.5 0.5 

2 0.153 0.081 0.095 0.097 0.126 0.114 0.072 0.006 0.071 0.079 0.101 0.5 0.5 

3 0.085 0.045 0.054 0.110 0.128 0.095 0.049 0.024 0.100 0.168 0.130 0.5 0.5 

4 0.1422 0.049 0.065 0.079 0.109 0.100 0.049 0.023 0.050 0.204 0.120 0.5 0.5 

 

 

(a) (b)  (c)  (d)  (e)  (f)  (g)  (h)  

 
Fig. 5. Behavior of the concepts when a fixed-point attractor is detected for: (a) Flat foot. (b) Cavus foot type 4. (c) Cavus foot type 3. (d) Normal foot. (e) Non-

Flat foot. (f) Non-Cavus foot type 4. (g) Non-Cavus foot type 3. (h) Non-normal foot. 
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Fig. 6. Subsequent values of output concepts until convergence. Numbers used as labels represent subject number under analysis, chosen randomly from fold 1. (a) 

Response of Normal foot vs remaining types. (b) Response of Flat foot. vs remaining types. (c) Response of Cavus foot type 3 vs remaining types. (d) Response 

of Cavus foot type 4 vs remaining types. 
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The parameter λ in (2), and the number of state vectors were 

chosen by the optimization algorithm that allows the output to 

reach a fixed-point efficiently before the 12th iteration for 

alteration (1) and non-alteration (0) avoiding limit cycle and 

chaotic behavior.   
Although stability in an FCM can be reached in a few iterations, 

it could be noticed that the FCM simulation for the normal foot 

requires more iterations to reach a fixed point, class where the 

relationship between the regions is tighter and more difficult to 

find. For each model representing the foot type, the algorithm 

found the best solution with different parameters in terms of 

weight matrix, parameter λ in (2) and constant k in (5). 

B. Validation of the FCM Model 

Table III shows the classification results of the system in 

each fold and each alteration, where the arithmetic mean of the 

evaluation measures was calculated with different partitions, 

repeating the process 5 times. The training sets had 90% (112 ± 

2) of the total data (125) and the rest for the test sets (13 ± 2). 

The classification error rate with the training data was adjusted 

around 10% for all the alterations and folds used, as shown in 

Table III. The probability that the system could correctly 

classify the test data for each model was adjusted by 89% on 
average. 

The confusion matrices were performed to obtain a more 

detailed result of the classification task with the proposed 

method. Table IV shows the average true positives (TP), false 

positives (FP), false negatives (FN), and true negatives (TN) for 

the classification task. Table V shows the calculated results, for 

the average test fold for each alteration. 

The BFOA-FCM methodology has a high capacity to detect 

alterations with an average sensitivity value around 0.93, but 

the capacity to detect the absence of a specific plantar alteration 

is lower with an average specificity value around 0.80 (Table 
V), considering the analysis of the percentage of load per unit 

area, it is evident that the model has ease in detecting the cavus 

type 4, due to the absence of load in zones LM and MM. And 

shows greater difficulty in detecting the normal foot since it has 

to involve all the areas of interest.  
TABLE III 

SCORE FOR EACH FOLD TO CLASSIFY BETWEEN ALTERATIONS 

Type of foot Fold Score 

testing 

data 

Average 

score testing 

Average 

score 

training 

 

Normal vs non-

normal foot 

1 86.6%  

 

83.7% 

 

 

85% 

2 80.6% 

3 84.3% 

4 80.4% 

5 86.6% 

 

Flat vs non-flat foot 

1 91.1%  

 

90.7% 

 

 

90% 

2 93.5% 

3 96.8% 

4 90.2% 

5 82.5% 

Cavus foot type 3 

vs non-cavus foot 

type 3 

1 88.8%  

 

84.1% 

 

 

85% 

2 80.6% 

3 81.2% 

4 80.4% 

5 89.4% 

Cavus foot type 4 

vs non-cavus foot 

type 4 

1 91.1%  

 

96.5% 

 

 

95% 

2 100% 

3 93.7% 

4 100% 

5 97.7% 

 

TABLE IV 

CONFUSION MATRIX FOR EACH MODEL  

 Normal foot 

 Predicted normal 

foojjjjjt 

Predicted non-

normal foot 

Real normal foot 10.6 1.6 

Real non-normal foot 6 22.4 

 Flat foot 

 Predicted flat foot Predicted non-flat 

foot 

Real flat foot 8.6 0.4 

Real non-flat foot 5 26.6 

 Cavus type foot 3  

 Predicted cavus 

foot type 3 

Predicted non-

cavus foot type 3 

Real cavus foot type 3 8.6 0.8 

Real non-cavus foot 

type 3 

7.6 24 

 Cavus foot type 4  

 Predicted cavus 

foot type 4 

Predicted non-

cavus foot type 4  

Real cavus foot type 4 9.6 0 

Real non-cavus foot 

type 4 

3 27.2 

 

TABLE V 

 VALIDATION RESULTS IN TERM OF SENSIVITY, SPECIFITY AND 

ACCURACY 

Type of Foot Sensitivity Specificity Accuracy 

Normal foot 0.86 0.78 0.81 

Flat foot 0.95 0.84 0.86 

Cavus foot type 3 0.91 0.76 0.74 

Cavus foot type 4 1 0.78 0.92 

 

The number of samples was rounded considering the number of 

samples of the test fold, against the correctly classified samples 

e.g., a fold of 15 samples, where 13 are correctly classified 

corresponds to 86.666%. 

C. Comparison of the Model 

To evaluate the methodology used, two physicians manually 

and individually classified a sample of 50 data from the same 

database (12 samples of normal foot and flat foot, and 13 

samples of cavus foot type 3 and 4 were considered). The results 

showed that physicians correctly interpreted 60% of normal 

foot, 75% of flat foot, 50% of cavus foot type 3 and 25% of 

cavus foot type 4. Each physician classified the different foot 

types according to their own criteria by viewing the images with 

pressure levels, as in Fig. 4 (a-d). This classification task is not 

easy, as confusion can occur when the plantar pressure levels of 
a subject resemble the two-foot types, where the algorithm was 

better as it perceives small alterations imperceptible to the 

human eye. In the presented model, the BFOA-FCM 

methodology can model the system with the use of an intuitive 

and small graph, achieving an accuracy of 89%, and it is 

possible to understand why it makes each classification 

decision. Previous authors have applied different techniques to 

use plantar pressure information to detect alterations and 

provide physicians with useful analysis tools, such as Neural 

Network and Gaussian Mixture Model (GMM) [9], Fuzzy 

Cognitive Maps-Genetic algorithm (FCM-GA) and Multi-

Layer Perceptron Neural Network (MLPNN) [9]–[11], [27]. 
Table VI shows the comparison of these previous studies using 

Fuzzy and non-Fuzzy approaches. Handling different 

configuration features in the systems, precision rates between 
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80.9 and 91% have been reported. 
TABLE VI 

CLASSIFICATION OF PLANTAR FOOT ALTERATIONS BY DIFFERENT APPROACHES 

Technique Reference Classification task Number of 

patients 

Parameters of interest Feature 

model 

Classification 

rate 

Neural 

Network 

 

 

[9] 

 

Classifies between normal, 

diabetic Type 2 with and 

without neuropathy 

patients 

 

 

84 

Toe 1st (T1), toe 2nd (T2), toe 3rd to 5th (T3–T5), 

metatarsal joint 1s (M1), metatarsal joint 2nd (M2), 

metatarsal joint 3rd to 5th (M3–M5), lateral midfoot 

(LM), medial midfoot (MM), lateral heel (LH), 

medial heel (MH). 

 

 

20 nodes 

 

90.4% 

GMM  

------- 

80.9% 

 

FCM-GA 

 

 

[27] 

 

 

Classifies between flat and 

cavus foot 

 

 

151 

patients 

 

Toe 1st, to 5th (T1–T5), metatarsal joint 1st to 5th 

(M1–M5), lateral midfoot (LM), medial midfoot 

(MM), lateral heel (LH), medial heel (MH). 

 

 

21 nodes 

 

91% 

 

 

MLPNN 

 

87% 

 

BFOA-

FCM 

 

Applied 

model 

 

Classifies between normal, 

flat, cavus type 3 and 

cavus type 4 foot 

 

250 feet of 

125 

patients 

Toe 1st, toe 2nd to 5th (T2–T5), metatarsal joint 1st 

to 5th (M1–M5), lateral midfoot (LM), medial 

midfoot (MM), lateral heel (LH), medial heel (MH). 

 

 

23 nodes 

 

 

89% 

 

Physician 

 

Applied 

study 

 

Classifies between normal, 

flat, cavus type 3 and 

cavus type 4 foot 

 

50 feet of 

patients 

Toe 1st, toe 2nd to 5th (T2–T5), metatarsal joint 1st 

to 5th (M1–M5), lateral midfoot (LM), medial 

midfoot (MM), lateral heel (LH), medial heel (MH). 

 

Manual 

 

52.5% 

BFOA-FCM approach uses 23 nodes each with 

understandable meaning, avoiding black boxes in the operation.  

Compared to the study of similar experimental features [27], 

where a high rate of success in the global classification was 

achieved, the number of classes was lower. So as more classes 

are included, the pattern becomes more difficult to find because 

the differences that identify them are more refined. With the 

proposed methodology for the classification of flat and cavus 

foot, it has been achieved up to 100% success in the 

classification, but by including the other classes the overall 

classification rate decreases because it becomes more 

complicated processing and classification. It is necessary to 

build a more complete database, with the integration of more 

knowledge sources and more samples in order to have a larger 

amount of data for training and for testing, so as to improve the 

learning of the algorithm. 

V. CONCLUSION 

The classification task of orthopedic foot alterations is not 

simple, as more possible classification groups (Normal, flat, 

type 3 cavus, type 4 cavus, etc.) may lead to confusion in the 

final decision making. The foot pattern varies between subjects, 

making it difficult to detect small differences that make the 

result an alteration or another. 

The FCM with BFOA proves to be a useful methodology, 

since through a simple structure and using an effective decision 

mechanism similar to that of humans, it is possible to classify 
with results close to 89% and to know the interaction between 

regions, which the system took into account to achieve the 

result. On the other hand, the response of the system is stable, 

where the number of iterations to reach the fixed point attractor 

varies between foot types as the difficulty to find the pattern 

varies. The model obtained is simple with only 11 input nodes 

representing each region of interest of the plantar surface as a 

function of the load percentage; 11 auxiliary nodes proposed to 

improve the performance of the graph and to observe the 

relationship between the input concepts; and one output node 

that allows classifying between what is an alteration and what 

is not. This type of classification output works as a filter, where 

with a new patient, the plantar pressure data must be tested with 

the 4 matrices. 

The precision and accuracy of the system change in relation 

to the number of foot types to be identified. As more types exist 

to classify, become more difficult to find the pattern. It was 

possible to obtain a classification result close to 90% that may 

be improved by using another optimization algorithm or a 
variation in the number of regions of interest on the plantar 

surface. To improve the results, further studies are being carried 

out considering a larger group of specialists to study 

populations from different countries with similar morphological 

characteristics. Also, the inclusion of postural variables can help 

the proposed algorithm to make a decision with greater accuracy 

and precision.  
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