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A Robust Traffic Information Management System
Against Data Poisoning in Vehicular Networks

Carlos Pedroso, Thiago S. Gomides, Daniel L. Guidoni, Michele Nogueira, Aldri Santos

Abstract—Attacks against systems supported by vehicular
networks, such as Traffic Information Systems, are more frequent
and critical because of the real-time demand and high volume
of data. Attacks that decrease data reliability, as data poisoning
— DaP, are the most damaging because they severely risk data
use. However, in general, vehicular network systems do not
implement these features. Hence, this work presents MOVE, an
efficient, secure, and VANET-based traffic management system
against DaP attacks. MOVE relies on watchdog monitoring and
relational consensus for attack detection, achieving efficient data
authenticity and high availability. The performance evaluation of
MOVE on OMNET++ has reached a detection rate of 90 %, false-
negative and false-positive rates of 4% and 10%, respectively.
MOVE decreases vehicle travel time by up to 40%, and average
time on traffic jams by 35%. It increases the average speed by
12% compared to ON-DEMAND.

Index Terms—Robust traffic management system, VANETSs
security; Attack detection and prevention.

I. INTRODUCTION

he effective management of urban mobility is key to
Tsmart cities because it directly impacts the quality of
life [1]. Inefficient urban mobility highlights social issues,
such as difficulties in managing transportation time and stress,
producing traffic jams and accidents. Inefficient urban mobility
also contributes to the rise of air pollution and costs, with
financial and environmental consequences [2]. Progress in
road infrastructures reduces traffic jams in certain regions, but
it commonly requires a high cost of design and operation.
Therefore, information and communication technologies play a
crucial role to improve safety, efficiency, and comfort in urban
mobility [3], [4], being vehicular ad hoc networks (VANETS)
a relevant technology to reduce the impact of congestion and
improve traffic management [4], [5].

VANETSs comprise vehicles that collaborate to monitor
and disseminate traffic conditions assisting in estimating new
routes without congestion. The secure and reliable exchange
of information is fundamental to getting those benefits [6],
[7]. However, VANETS face security vulnerabilities that allow
attackers to exploit and violate data dissemination service’s
availability, integrity, and authenticity. Attacks undermine and
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impact the operation of traffic management system (TMS) [7].
Several studies have focused on handling attacks against data
dissemination services [8], having as main goal to protect
vehicles or data [6], [7] against attacks.

Among data-oriented attacks, Data Poisoning (DaP) is one
of the most harmful. They generate inconsistency in data
during dissemination [9], making it a challenge to detect
DaP attacks because attackers benefit from devices already
authenticated and operational in the network, performing data
collection and dissemination [10]. Vehicle-oriented solutions
assess data sources through the analysis of their behavior.
Their results show that existing vehicle-oriented solutions have
not been suitable for traffic management systems because
they employ centralized entities, generating high consumption
of resources, disregarding data verification, and they ignore
collaborative detection between vehicles.

Hence, the literature urges alternatives to deal with threats
in data dissemination services exploring the natural char-
acteristics of VANETS. In this direction, collaborative de-
tection stands out [11], where each device carries out its
standard functions and plays as a collaborative attack detection
agent. An effective way to achieve collaborative detection
is to combine watchdog strategies and relational consensus
strategies [12], which allow systems to work in a distributed
way among vehicles and quickly detect, identify, and isolate
suspicious vehicles that exhibit DaP behavior over time.

This article presents a robust traffic management system
for vehicular networks, called MOVE (Relational Consensus-
Based Secure Traffic Management fOr VANETS). MOVE
reduces the damages of traffic jams, and its operation follows
the collection and distribution of traffic information to support
the identification of alternative routes that improve travel
time. MOVE also supports a robust communication mecha-
nism through watchdog monitoring and decision-making by
relational consensus. MOVE promotes accurate data authen-
ticity and availability to create a database distributed through
vehicles on the road. A performance evaluation follows
simulations and promotes a comparative analysis among the
ON-DEMAND system [4], other traffic management system,
and MOVE under different scenarios. MOVE has achieved
90% of DaP detection rate, with 4% of false negative, 10%
of false positive, with 0.86 of accuracy. MOVE has promoted
a reduction of average travel time by 40%. Additionally, it
has decreased the average time lost caused by traffic jams by
35%, and has increased the average speed by 12% compared
to ON-DEMAND.

This article proceeds as follows. Section II presents the re-
lated works. Section III details the MOVE system. Section IV
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shows the performance evaluation. Finally, Section V presents
conclusions and future works.

II. RELATED WORK

Recently several works have addressed traffic management
system supported by distributed communication in vehicular
networks [4], [5], [13]. In these solutions, vehicles are re-
sponsible for route monitoring and decision-making. Upon
detecting a traffic jam, the vehicle forwards this information to
others by a collaborative method, so that they can define a new
route with fewer congestion points. Though, security issues
emerge and disturb the TMSs [7], [14]. In [8], it is proposed an
instant data evaluation scheme (IDES) for vehicle reputation
management in VANETS against 3 types of intrusion attacks:
bogus, collude, and secret. IDES collects the global reputation
of vehicles for instantly recognizing untrusted data messages.
It considers the global historical reputation records, requiring
low processing time for message validation, but it ignores the
collaboration between vehicles and disregards data validation.
In [15], a vehicular misbehavior detection system based on
Support Vector Machine (SVM) taking into account the data
trust and the vehicle trust. The data trust emerges the SVM-
based classifier to detect false messages based on message
content and vehicle attributes, while the vehicle trust comes
from a local vehicle trust module and a trusted authority
(TA) vehicle trust module. In [16], a reputation management
framework evaluates the trust in VANETS to identify denial of
traffic service. The framework employs an integrated entity-
centric and event-centric mechanism to establish trust. It uses
the Roadside Unit (RSU) to manage the long-term reputation
scores for most commuter vehicles with predefined daily
trajectories. An event-centric reputation mechanism is adopted
as a useful supplement. Though, computing trust between
vehicles only is not enough to disseminate data safely.

In [17], the authors developed a framework for behavior de-
tection by a V2X communication (vehicle-to-vehicle, vehicle-
to-infrastructure and vehicle for any communication device).
A central server acts as an authority for operation identification
to achieve a global classification of the behavior of vehicles.
Hence, this structure constantly overloads the network and
hinders transmission between vehicles that always need to
inform the central about misbehavior. In [18], an Intrusion De-
tection System (IDS) for detecting false data injection attack
on a fixed industrial IoT network employs clusters similarity
to handle with the devices density. It combines watchdog
monitoring and collaborative consensus among objects to han-
dle false data injection attacks. Despite effectiveness against
attack, it ignores the device mobility issues. In [19], a system
to detect distributed denial of service attacks (DDoS) attacks
analyzes each data collection point using a Bayes classifier.
The analysis happens redundantly, in parallel with the level of
each data collection point, to avoid the single point of failure.
Further, a distributed consensus favors collaborative decision-
making. Though, the communication overhead among the
participants diminishes the system’s effectiveness. Therefore,
as described in the works above, approaches against DaP
attacks in vehicular networks usually employ a centralized and
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trusted entity for attack detection, limiting the growth of the
network. In addition, they disregard data verification and the
source of the attack, which increases network malfunction and
allows vehicles to use corrupted information to make transit
decisions. Thus, it is necessary to develop solutions capable
of acting in a distributed way and capable of identifying
and isolating malicious devices in VANETSs to guarantee the
exchange of traffic information between vehicles.

III. SECURE TRAFFIC MANAGEMENT

This section describes the MOVE (Relational Consensus-
Based Secure Traffic Management fOr VANETS) system for
providing secure VANETSs traffic management against data
poisoning attacks. By periodically checking their neighboring
roads’ traffic conditions, vehicles with MOVE get to detect
traffic jams and thus computing new routes. For that, vehicles
check their neighboring roads’ traffic conditions periodically
and establish a new route whether traffic jams are detected.
A communication protocol enables vehicles to request traffic
information from other roads and store it in order to check
it posteriorly. Applying the stored data, each vehicle gets to
check for a new lower-cost route. Meantime, in this scenario,
malicious vehicles/attackers, aiming network disturbing, can
add false information through the data poisoning approach
and affect the new routes decisions. Thus, MOVE is a TMS
that takes care in identifying and excluding vehicles with
misbehavior from the traffic information request-response pro-
cess. Fig. ?? illustrates the vehicular setting of the MOVE
operation that by using traffic information from neighboring
roads, vehicles compute new routes with fewer traffic jams; in
this way, each solid arrow on the road means a possibility for
traffic jams avoidance. Though, face a DaP behavior by the
red vehicle (red dotted arrow), the vehicle route changes; and
the route in purple is no longer considered by the vehicle.
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Fig. 1. A scenario of MOVE operation.

Vehicular devices model: Each vehicle in the VANET envi-
ronment is capable of processing, analyzing, communicating
and making distributed decisions. Vehicles own a set of
technologies as On-Board Data Unit (OBU), IEEE 802.11p
communication interface, and several sensors. Further, they
operate in two main ways, as normal network members or
cluster-heads, where a cluster means a group of vehicles
traveling in the same lane with similar traffic views.

Network model: The VANET scenario is represented by a
directed and weighted graph G = (V, E), where V (vertex)
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and E (edges) represent intersections and roads, respectively.
The set V is defined by V = {vg, v1, ..., vy} and the set
E = V(vj,vj), so that each edge e;j = (vj,vj) means the
road segment that connects two intersections v; and vj. The
respective cost to travel the segment e is w;;. W describes
the set of weight as W = {wj;, @ # j}.

Communication model: Vehicles communicate each other
over the wireless medium by mean of an asynchronous channel
with packet loss due to noise and nodes position. Further, we
applied two types of messages to help the MOVE manage
and secure the network: 4) alert/control messages for the
control, management, the formation of clusters, and exclusion
of attacking nodes; i) Congestion Level (CL) messages,
which provide information on traffic flow variations.

Attack model: The threat to the network consists of Data
Poisoning (DaP) attacks, where attackers, once intruded into
the network, initiate false dissemination of congestion infor-
mation. There are three different variants of attacks: 7) Inverse
attack, whose attackers always send traffic data in reverse to
the real data collected by the vehicles; i7) Max Level attack,
where the attackers always send the highest measurement
of traffic data to other vehicles; and ii¢) Random attack,
where attackers always send traffic measurements with random
values. We assume that DaP attacks happen by exploiting
vulnerabilities resulting from other attacks, such as Sybil, or
even network failures in which the attacker knows the data
characteristics [10].

A. MOVE Architecture

The MOVE architecture comprises four main modules,
named Displacement Analysis (DA), Congestion Level Dis-
semination (CL-D), Route Decision (RD), and Security
(SR), as shown in Fig. 2. Through the DA module, vehicles
periodically monitor the displacement on their current road.
DA plays an essential role in providing traffic information
to CL-D and SR modules. CL-D then forwards the traffic
information provided by DA to the neighbor’s vehicles. Ve-
hicles must store these received traffic data on their database,
which contains the CLs of adjacent roads. RD makes use
of the stored information for checking the existence of new
routes, i.e. RD is a decision-making module. Note that, over
the CL-D operation, malicious vehicles may provide poisoning
traffic data about the conditions of their roads, and harming
the decision of the module RD about the appropriate route.

The SR module addresses the security of traffic information
disseminated among vehicles so that only legitimate data
is available, i.e without poisoning. It comprises three com-
ponents called Cluster Alert Dissemination (CAD), Cluster
Control (CC), and DaP Detection (DD). The CAD component
holds the control messages exchanged among the vehicles
with information about the cars’ displacement analysis. CC
coordinates the creation of a cluster of vehicles on a road
and makes the monitoring and verification of vehicles that
do not respect the similarity threshold between the traffic
information disseminated by the vehicles. DD acts in the
decision making and isolation of DaP attacks, applying jointly
relational consensus and statistical analysis of standard devia-
tion for detecting and excluding DaP vehicles. Thereby, when
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Fig. 2. MOVE architecture.

detecting an attacker, the vehicles alert the cluster leader about
the attacker’s existence and its traffic information.

B. Traffic Management

The MOVE’s vehicular traffic management plays similarly
to the model proposed by [4]. Therefore, during the displace-
ment on city roads, vehicles monitor their current road traffic
conditions. The DA module performs this role by analyzing
vehicle travel conditions and correlating them with the road
characteristics. Thus, each vehicle monitors its displacement
based on the relationship between the Traveled Distance (TD)
with the Verified Travel Time (VTT). Regarding the maximum
allowed speed and VTT, we can calculate the Expected Dis-
tance (ED), which is the expected distance under free-flow
conditions. In this sense, when MOVE checks that the vehicle
has TD = ED, it considers the vehicle as traveling under
free-flow conditions, which means a congestion level equals
1; and whether T'D < E'D the vehicle is traffic jams. Note
that the higher difference between TD and ED, the greater is
the CL value; and the congestion levels range from 1 (free-
flow) to 10 (severe traffic jam). In [4], the authors provide a
detailed explanation about the CLs’ calculation.

All vehicles maintain a database with a set of tuples
(road;q, value), where road;q; means a road identifier and
value corresponds to either (i) unknown value or (ii) con-
gestion level value. The database tuples provide traffic infor-
mation upgraded in ¢ predefined intervals. For instance, for
each interval ¢ seconds, vehicles must check which adjacent
roads have an unknown status in their database. For these
nearby road segments with unknown value, a traffic request
message is then forward. To avoid network overload issues,
only the longest vehicle traveling on a road with traffic
request must reply the message, i.e, the cluster leader. Note
that this vehicle has a more accurate perception of the CL,
disregarding the impact of small traffic variations. Each request
message aims to trigger a response message. The response
message is addressed for all vehicles in the communication
range, even the requesting one. Thus, vehicles update their
respective databases with updated information (road;q, C'L;q).
For an unanswered request, an unknown value is assign in the
database. Module CL-D is responsible for database making.

After receiving the requested information, through Mod-
ule RD, vehicles apply the network model based on the
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graph G = (V| E) (described in Section III) to know the
existence of a new lower-cost route. Therefore, each tuple
(road;q, CL;q) added in the database is associated with an
edge e;; = (v;,v;) and an weight w;;. While roads with
unknown values receive C'L = 1 for keeping the consistent
database, i.e. with all segments information. Vehicles get to
update GG and calculate a route, and under the new route with
fewer traffic jams interference than the previous one they will
change their direction.

C. Security Management

The security module (SR) takes into account the control
messages exchanged between vehicles to identify traffic level
values out of the predefined similarity threshold established by
the traffic information on the road. It keeps data about neighbor
vehicles seen as suspects or attackers in disseminating false
information. Those data support SR to analyze the vehicles
operating on the road, allowing an assertive detection of DaP
attackers, and the maintenance of reliable vehicle clusters.
The cluster leader vehicle, one that has been on the road the
longest, acts to exclude DaP attacks based on the information
sent by the other cluster members. Algorithm 1 describes
the procedures for identifying and mitigating inconsistent
traffic information created by DaP attacks. The detection starts
along with the first exchanged control message since the
vehicles need neighbor traffic information to compare with
its information.

Algorithm 1: DaP Attack Security

1 procedure CLUSTERING CONTROL (msg)

2 if msg.EmitterVehicle € NeighList then

3 NeighTraff «— NeighTraffUmsg.Traf ficMeasure
4

NeighTrafTime «— NeighTrafTime U msg.TravelTime
s else if msg. EmitVehicle ¢ AttkList, SuspList then

6 if msg.Traf ficMeasure < Thresholdconsensus then

7 NeighList «— NeighList Umsg.EmitVehicle

8 NeighTraff <— NeighTraff Umsg.Traf fMeasure

9 else

10 SuspList +— SuspList Umsg.EmitVehicle

11 end procedure

12 procedure DAP ATTACK DETECTION (msg)

13 if msg.EmitVehicle € SuspectList then

14 SuspListimsg.EmitVehicle] + +

15 if SuspListimsg.EmitVehicle] > thresholdattack then

16 AttkList «— AttkList Umsg.EmitVehicle

17 BroadcastMessage(“DetectedAttacker” , Attk =
msg.EmitterVehicle)

18 end procedure

19 procedure CONSENSUS EXCLUSION (msg)
20 if AmILeader then

21 if msg == “DetectedAttaker” then
2 AttkListLeader|msg.Attk] + +
23 if AttkListLeader[msg.Attk] > thresholdattack then

BroadcastMessage(“Attackerbyconsensus”, msg.Attk)
25 end procedure

The CAD component periodically sends control messages
by beacons for establishing clustering of vehicles as well as ve-
hicles labeled by others as suspect, attacker, and honest. Thus,
upon receiving a control message (msg) via the Clustering
Control procedure, the vehicle verifies the traffic information
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of the vehicle emitter to check whether it (EmitV ehicle)
is belonging to its street neighborhood (NeighlList) (I.1-2).
Case the emitter is already a cluster neighbor, i.e. it has
previously sent information within the Thresholdconsensus,
the vehicle then stores its traffic information (NeighTraf f)
and travel time (NeighTravTime) (I.3-4). Reminding that
the longest travel time will indicate the cluster leader vehicle.
Case the emitter is not yet a cluster neighbor, it is checked
in the lists of (SuspList) and (AttkList) (I.5). Suppose the
traffic congestion sent respect the Thresholdconsensus, i.e. the
average level of congestion according to the traffic information
sent by the vehicles in the cluster, the receptor updates its
list of neighbors and the traffic information (/.7-8). Otherwise,
only the SuspectList list is updated.

The DaP Attack Detection procedure carries out also
whenever a vehicle receives a control message (msg) in
order to check which vehicles are acting as attackers on the
network. When the emitter vehicle belongs to the suspect list
of the receptor vehicle (.13), and whose the count exceeds the
threshold thresholdattack (1.15), the emitter is classified as
an attacker, being then a “Detected Attacker” message sent
to the cluster vehicles (/.16-17). The Consensus Exclusion
procedure performed by the cluster leader makes the removal
of attacking vehicles in that clustering. As the role of cluster
leader varies over time, the vehicle checks whether it is playing
as one at that moment (1.20). The leader, upon receiving a
“DetectedAttacker” message, updates how many times the
attack was detected by cluster members (/.22) and when ex-
ceeding the thresholdattack, it must also notify all neighbors
on the street the discovery of an attacker by consensus (/.24).
Note that the list of NeighTravTime initializes at each
beacon interval. Thus, at the moment a vehicle changes the
traveled street, it will send a control message on the new street
and will leave the clustering of the previous one since each
vehicle belongs to only one street clustering at any given time.

(X — Ma)?
DP = \/le ( N 4) < Thresholdconsensus (1)

Equation 1 computes the relational consensus based on
the traffic congestion values measured by the vehicles. Thus,
the reading values collected are used to form and assess the
consensus between the vehicles in the cluster.The consensus
formation takes into account the set of traffic congestion values
D = (d;,d;41, ..., dy), which represents the samples checked
by the leader. The consensus calculation, indicated by > ;,
comprises the sum of the values of all positions. The value of
X is referenced in position ¢ of the data set D. M 4 represents
the arithmetic mean of the data. N means the amount of data
evaluated in the formation of the consensus. The consensual
threshold (Thresholdconsensus) expresses the predefined
value, i.e. the traffic maximum allowed in the clustering, which
can change according to the type of information evaluated. In
this sense, the relational consensus encompasses the agree-
ment, relationship and uniformity of opinions that vehicles
establish through exchanging information between them. This
information relates to the traffic congestion value available
on each vehicle, being associated with the other vehicles to
validate DaP attacker.
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Equation 1 computes the relational consensus consider-
ing/through/based on the values measured by the vehicles.
In this way/Particularly, the reading data collected by the
vehicles participating in the network are used to form a
consensus and compare them between them. The con-
sensus formation/deal takes into account... Thus, a data
set D = (d;,dit1,...,dn) is used, which represents the
samples checked. The consensus calculation, indicated by
Z;L:l, comprises the sum of the values of set D, from the
first position (¢ = 1) to position n € N. The value of X;
is referenced in position ¢ of the data set D. M4 represents
the arithmetic mean of the data. N means the amount of data
evaluated in the formation of the consensus. The denominated
consensual threshold (Thresholdconsensus) expresses the
predefined value, which can change according to the type
of data evaluated and the application where it operates. In
this sense, the relational consensus encompasses the agree-
ment, relationship and uniformity of opinions that vehicles
establish through exchanging information between them. This
information relates to the data available on each vehicle and
is associated with the other vehicles to validate DaP attacker.

T
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Fig. 3. Relational consensus among vehicles.

Fig. 3 illustrates an example of relational consensus among
vehicles for detecting a DaP attacker. The dotted arrows mean
the communication between the vehicles. In T}, the vehicles,
Vg, Vb, Ve, Vg perform the exchange of control message and
cluster formation and leader elections. In 75, only the vehicles
(vg, vy, v.) integrate the cluster, because they respect the
similarity threshold of the traffic information and v, is elected
leader. However, the traffic information sent by vy does not
respect the Thresholdconsensus, and vy is classified as a
suspicious. In T3, the vehicle v, sends control messages again
to try to return to the cluster. The set formed by the vehicles
(Vg, vp, v.) perform the calculation of Equation 1 and classify
vq as an attacker since it again has divergent readings about
the readings of the vehicles in the set. Finally, 74 illustrates
the situation where the messages from the vehicle vy are
disregarded since it will not participate in the clustering.
Thus, the security is maintained in a distributed way by the
participants themselves without the need for external entities.
Vehicles executes DA during the entire trip. DA module,
therefore, provides information to CL-D and SR modules. CL-
D assess the congestion level requests by vehicles in adjacent
roads. Meanwhile, SR allows vehicles to cluster to detect and
exclude DaP attackers. After that, CL-D modules receives
filtered data and forwards it to RD in which performs the
decision.

IV. EVALUATION

In this section, we present a performance evaluation by
simulation of MOVE to support the service of traffic alert man-
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agement. We implemented the MOVE by using tools that
simulate vehicular communication, urban mobility, and the
data poisoning (DaP) attacks model. In this way, we ap-
plied SUMO version 0.25 to coordinate and execute vehic-
ular mobility and OMNET++ 5.1.1 and Veins 4.6 to ensure
communication among vehicles. We evaluated both systems
applying a Manhattan grid map under a region of 1 km? with
the same parameters and specifications, described in [20], for
instance, 120 road segments (two-way) with 200 meters each
one, corresponding to 25 squares of the same size. For each
simulation, we assessed a traffic density of 1000 vehicles/Km?2,
where each vehicle travels a route composed of a random
origin-destination pair. Further, MOVE sends the beacon dis-
semination at every two seconds and sets the value of three for
both thresholdattack and thresholconsensus thresholds.
We evaluated three types of data poisoning attacks: Inverse,
Max level, and Random, as well as six different percentages
of attackers: 1%, 5%, 10%, 20% and 30%. The following DaP
attacks model are based on the work [10] and [18]. We look
at metrics of traffic management performance and security
when evaluating MOVE. For traffic management, we assess the
Average Travel Time (TT), Average Time Lost in Traffic
(TL), and Average Speed (ASp), so that TT is related to
the ability of the system to minimize the effects of traffic
congestion; TL measures the extra time spent by vehicles to
complete its trip under traffic jams, and ASp assesses how fast
vehicles traveled in the network, where lower values mean a
significant influence of traffic jams. For that, MOVE has been
compared with the traffic management system named ON-
DEMAND [4]. The security evaluation focuses on how MOVE
identifies and excludes attackers. In the security evaluation,
we analyzed only MOVE due the ON DEMAND ignore
security issues, and applied the following metrics: Attack
Detection Rate (ATR), Accuracy (AC), False Positive (FP),
False Negative (FN), Consensus Attacker Detection Rate
(CADR), Positive Consensus (PC), and Negative Consensus
(NC). In addition, we performed 33 simulations for each
scenario (corresponding to the type of attack and a percentage
of attackers), with a confidence interval of 95%. We carried
out a comparative performance analysis between MOVE and
ON-DAMAND, and we did not make a comparative security
analysis because the closest work [16] focuses on mainly the
trust among the devices against DDoS attacks and works on a
centralized topology, being unfair to a comparative analysis.

A. Results

The performance of MOVE and ON-DEMAND under traffic
jams is shown in Fig. 4. As both systems are inspired by
[4], they achieved similar behavior in a normal operation,
but face to rising attacks is notable the difference of traffic
information availability between them. The TT values seen
in Fig. 4 indicate that MOVE gets to mitigate the poisoned
traffic information through collaborative data validation. As
ON-DEMAND does not employ a mechanism to detect and
eliminate poisoned data, it takes into account these poisoned
data in the traffic management. Further, the percentages of the
DaP attackers in the network makes a substantial difference
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in relation to travel time provided by both systems. MOVE
achieved a reduction of the average travel time by 40%,
7%, and 12% under attacks Random, Max level, and Inverse,
respectively, compared to ON-DEMAND, for 5% of attackers.
For 20% of attackers, MOVE decreases the travel time by 23%
for Random, 1% for Max level, and 24% for Inverse.
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Fig. 4. Traffic management performance regarding travel time.

Reducing the time lost in transit can substantially mitigate
the environmental impact caused by additional fuel consump-
tion and CO, emissions. But, it is worth noticing that attacks
make traffic decisions more challenging, with a higher chance
of wrong decisions, and impacting the vehicle TL. Thus, the
TL values in Fig. 5 show that even under a few attackers
(1% and 5%) in all types of attacks, ON-DEMAND achieved
a low performance, highlighting how complex the decision-
making is. While MOVE slightly increased the TL up to 5%
under 1%, 5%, and 10% of attackers. Further, with 20% of
attackers, MOVE increased the TL up to 30% for all attacks.
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Fig. 5. Average time lost due to traffic jams.

The values of average speed shown in Fig. 6 point out that
attacks yielded high variability in the speed of vehicles with
ON-DEMAND and a large confidence interval. Hence, it is
essential the implementation of a mechanism for robust data
poisoning detection and management. While MOVE achieved
better results than ON-DEMAND in all evaluated attacks and
densities, obtaining average speed around 17 km/h. We stand
out that the attack Inverse is more dangerous to MOVE,
generally decreasing the average speed around 3% compared
to other attacks.

The graphics in Fig. 7 show the ATR, AC, and FP, and FN
rates obtained by MOVE under the three types of DaP attacks.
We note that MOVE reached an average of 87% detection for
all scenarios and an average of 100% for scenarios with 1%,
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Fig. 6. Traffic management performance regarding average speed.

5%, and 10% of DaP attacks. These high ATRs corroborate
with low FP and FN rates, where MOVE obtained an average
of 4% for FPs and 10% for FNs. Further, MOVE reached
AC values between 0.85 and 0.89, showing its capacity to
correctly detect attackers. The wrong detection of an attack
by MOVE is due to errors in calculating the consensus value
among vehicles monitoring suspicious ones with low deviation
from their readings. Firstly, those vehicles are classified as
suspicious, but as new interactions and traffic information
exchanges between vehicles take place, new calculations will
allow the MOVE to identify the attack correctly. The attack
detection effectiveness is due to the existence of the watchdog
monitoring among all vehicles. Additionally, the suspect and
attacker lists ensure the assertive detection of all DaP attacks.
Further, with 20% of attackers, the MOVE rates remained
stable for all security metrics.

TABLE I
EXCLUSION BY CONSENSUS

Percentage of attackers

Attacks  Metrics 1% 5% 10% 20% 30%
CADR 76 63.6 40 18 11
Random PC 1 0 0 0.7 0.3
NC 0.02 1.9 6.66 20.3 38.1
Max CADR 96 92 86 69 43
Leael PC 0 0 0 0 4
v NC 0 0.4 15 77 243
CADR 97 93 81 63.7 39.9
Inverse PC 0 0 0 0 0
NC 0.03 0.03 2.1 9.5 25.7

Table I shows the effectiveness of relational consensus
to exclude DaP attackers. This consensus takes into account
attacker traffic information detected by at least three vehicles
in the network (thresholconsensus). We evaluated MOVE
against DaP attacks in all scenarios by assessing the CADR,
NC and PC rates. We noted that for attacks maximum and in-
verse level, MOVE remained stable with CADR rates varying
between 75% and 80% and reaching 97% in some cases. It
is noteworthy that MOVE under the random attack exhibited
the worst results since the random attack behaviors are un-
predictable in relation to other attacks. The PC and NC rates
varied between 0.4% and 9%, meaning the exclusion of only
legitimate attackers in the network. The effective exclusion of
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Fig. 7. Detection rate of DaP attacks,Accuracy, False Negative and False Positive Rates.

attackers is due to the relational consensus among vehicles
and also the interactions among ones that have detected any
type of DaP attacks.

V. CONCLUSION

This work presented the MOVE system for robust traffic

management against DaP attacks in VANETS. MOVE supports
the collection and dissemination of traffic information to estab-
lish new routes with better travel times under congestion sce-
narios. To protect the system against data poisoning, MOVE

relies on a watchdog technique to monitor the behavior of

vehicles on the data information in the network and a relational
consensus distributed by the similarity between neighboring
vehicles to detect DaP attacks. Simulation results have shown
MOVE’s effectiveness greater than 80% in detecting, mitigat-
ing, and isolating three types of DaP attacks, thus ensuring
that only authentic data traffic is available for the vehicles. As
future works, we will evaluate the MOVE performance under
the three types of DaP attacks acting simultaneously, as well
as its performance by applying realistic vehicle tracks such as
Cologne and Luxembourg. We will also compare the security
of other TMSs under DAP attacks.
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