
IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 9, SEPTEMBER 2022 2139

Early Soft Error Reliability Analysis on RISC-V
Nicolas Lodéa, Willian Nunes, Vitor Zanini, Marcos Sartori, Luciano Ost, Ney Calazans, Rafael Garibotti,

and César Marcon

Abstract—The adoption of RISC-V processors bloomed in
recent years, mainly due to its open standard and free instruc-
tion set architecture. However, much remains to help software
engineers deliver high-reliability and bug-free applications and
systems based on RISC-V IP designs. This work proposes an
early soft error reliability assessment of a RISC-V processor,
extending the previously proposed SOFIA fault injection frame-
work. Results from 850k fault injections show that choosing
the compiler flag -O2 to optimize performance causes 96%
more Hang failures than -O0. Software engineers must evaluate
compilation parameters on a case-by-case basis to find the best
balance between performance and reliability. This work helps
software engineers develop fault-tolerant RISC-V-based systems
and applications more efficiently.

Index Terms—Reliability, RISC-V, Soft Error, Fault Injection.

I. INTRODUCTION

In recent years, the use of embedded systems has grown
significantly, particularly in areas such as the Internet of

Things and edge computing [1]. This growth implies systems
that differ in performance, security, reliability, and power
consumption requirements. On the one hand, software devel-
opment for such systems plays a vital role in performance,
energy efficiency, and reliability [2]. On the other hand,
open hardware initiatives like the RISC-V architecture [3]
allow collaborative development and bring more security to
projects. These initiatives arise in the RISC-V project due to its
open and royalty-free characteristics, which is common sense
since open-source IP companies and regulatory bodies (e.g.,
governments) can certify the absence of spyware or malware
on chips after the manufacturing process [4].

Improving reliability and the security level of embedded
systems requires developing mechanisms and environments
to assess permanent faults, also known as hard errors, or
transient faults, known as soft errors. While hardware design
defects usually cause the first, the second is generally caused
by phenomena such as the incidence of radiation, which may
cause single-event upsets (SEUs) [5]. The occurrence of an
SEU can corrupt memory data, impair application output, or
even cause a catastrophic system failure, potentially resulting
in loss of life in safety-critical applications, such as pedes-
trian detection algorithms in autonomous vehicles. Such faults
have motivated the increase in research on the reliability of
embedded algorithms [6]–[10].

N. Lodéa, W. Nunes, V. Zanini, M. Sartori, N. Calazans, R. Garibotti
and C. Marcon are with the School of Technology, PUCRS, Brazil (e-mail:
{nicolas.lodea, willian.nunes, vitor.balbinot, marcos.sartori}@edu.pucrs.br,
{ney.calazans, rafael.garibotti, cesar.marcon}@pucrs.br).

L. Ost is with the Wolfson School, Loughborough University, UK (e-mail:
l.ost@lboro.ac.uk).

Embedded systems reliability exploration imposes signifi-
cant challenges, including: (i) the ability to perform a large
number of tests in a reasonable time; (ii) providing engi-
neers with a detailed view of the system behavior in the
presence of failures; and (iii) identify associations between
application characteristics and processor-specific parameters
in large datasets resulting from the tests. Exposing these
systems to radiation effects results in more accurate data.
However, the high cost and time of planning and verification
make this assessment impractical for most projects. Thus, fault
injection techniques are often a better method to evaluate soft
errors in embedded systems at project development time [11].
Simulation and emulation tools typically inject faults using a
processor model, usually at high or medium abstraction levels.

The current scenario requires faster and more efficient
means to assess the embedded system reliability. Frame-
works based on virtual platforms (VPs) achieved popularity
in academia and many industrial sectors over the years due
to their design flexibility, debug capability, and simulation
performance. For example, Akram et al. [12] describe a
gem5 extension to simulate reliable execution environments.
Other recent works incorporate fault injection capabilities into
VP frameworks [13], [14], allowing the analysis of complex
applications and different processor architectures in the early
design phases. The main contribution of this paper is the
extension of a VP framework to support fault injection in
RISC-V processors. The work contributes to the use of VPs
in the reliability assessment during the early design phases of
RISC-V-based systems. It enables software engineers or other
professionals involved in the design to develop fault-tolerant
RISC-V-based systems and applications more efficiently. Other
contributions of the paper are: (i) the presentation of PUCRS-
RV [15], an open-source synthesizable implementation of the
RISC-V processor with support for the RV32I instruction set;
and (ii) the reliability investigation of the SEU occurrence on
RISC-V processors.

The rest of this paper is organized as follows. Section II
presents related works regarding soft error assessment of
RISC-V processors and the different fault injection environ-
ments found in the literature. Section III presents the PUCRS-
RV processor and the SOFIA VP framework. Furthermore, it
details the proposed extension and this work’s adopted fault
classification. Section IV assesses the SEU reliability of the
PUCRS-RV processor. Finally, Section V presents the final
remarks and future work.

II. RELATED WORKS

The increasing complexity of computer systems and the
need to assess their reliability with applications of different

2140 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 9, SEPTEMBER 2022

TABLE I
RELATED WORKS ON THE RELIABILITY OF RISC-V PROCESSORS WITH DIFFERENT FAULT INJECTION ABSTRACTION LEVELS.

Works Year Processor FI Abstraction Level Fault type Number of ApplicationsRISC-V Arm Fault Injections

Wilson and Wirthlin [16] 2019 ✓ FPGA (Radiation) SEU — Dhrystone

Oliveira et al. [17] 2020 ✓
FPGA (Radiation),
FPGA (Emulation) SEE — Matrix Mult., Quicksort, AES

Ramos et al. [18] 2017 ✓ FPGA (Emulation) SEU 10k Quicksort, Matrix Mult., Tower of Hanoi,
Dijkstra, Mergesort, FFT

Cho [19] 2018 ✓ FPGA (Emulation) SEMU 80k SPECINT 2000, MinneSPEC
Ramos et al. [20] 2019 ✓ FPGA (Emulation) SEU 10k Dijkstra, Fibonacci, Matrix Mult., Quicksort

Wali et al. [21] 2020 ✓ FPGA (Emulation) SEE (SEFI) 10k Tower of Hanoi, Dijkstra, Matrix Mult.,
Quicksort, Merge Sort

Marques et al. [22] 2021 ✓ FPGA (Emulation) SEU 100k Fibonacci
Mohseni and
Reviriego [23] 2019 ✓

FPGA (Emulation),
RTL (Simulation) SEU 10k Bubble Sort, Dijkstra, FFT, Matrix Mult.,

Quadratic Equation
Gupta et al. [24] 2015 ✓ RTL (Simulation) SEE — In-house Application
Santos et al. [25] 2020 ✓ RTL (Simulation) SEU 100 Array Sum, CCSDS, Coremark
Bandeira et al. [26] 2019 ✓ VP (Simulation) SEU 800 YOLOv3 algorithm
Abich et al. [14] 2021 ✓ VP (Simulation) SEU 1k a 10k 52 applications

This work 2022 ✓
ASIC (Synthesis), RTL

and VP (Simulation) SEU 17k 25 applications

criticality levels drive research to describe and evaluate the
functionality of these systems at high levels of abstraction.
This section reviews the literature focusing on the RISC-V
processor and environments to assess its reliability, comparing
it with the approach proposed herein.

Table I summarizes the state-of-the-art RISC-V processor
reliability and the related test environments, covering different
fault injection abstraction levels. Except for references [14],
[26], and the present work, none of the reviewed approaches
addresses VPs. Most works assess the reliability of RISC-V
processors with a high level of accuracy through descriptions
of low-to-medium abstraction levels. This includes works with
radiation testing [16], [17], FPGA emulation [17]–[23] and
RTL simulation [23]–[25]. The choices have high financial
costs (radiation testing) or are more time-consuming (FPGA
emulation and RTL simulation), compared to VP-based test
environments. VP-based fault injection environments, in turn,
present a larger degree of imprecision in results. However,
Abich et al. [14] show that it is possible to control such
inaccuracies, keeping them at or below 10% if coupled with
a well-characterized model.

Wilson and Wirthlin [16] and Oliveira et al. [17] apply
triple modular redundancy (TMR) and scrubbing techniques
to protect RISC-V processors against radiation incidence. Ra-
diation testing is justifiable by the need to assess the reliability
of RISC-V-based products. Nonetheless, these works evaluate
just a few applications and focus on the end of the processor
design process. Accordingly, a high-level abstraction approach
is best recommended for the early stages of processor design
to complement and enhance radiation results.

Works [17]–[23] evaluate the reliability of RISC-V proces-
sors emulated in FPGAs with different purposes. Mohseni and
Reviriego [23] divide the processor into modules to analyze the
individual soft error sensitivity. Wali et al. [21] investigate the
impact that the Linux operating system causes on the reliability
of the lowRISC processor embedded in an FPGA. Cho [19]
assesses the reliability of two RISC-V implementations: in-
order and out-of-order execution organizations. Results show
a lower number of processor failures in the out-of-order

organization. However, the fault types of the two processors
remain proportional.

Other works propose fault-tolerant architectures emulated
in FPGA. Oliveira et al. [17] protect the RISC-V processor
through different TMR versions. Ramos et al. [20] were
more specific, protecting only the Arithmetic and Logical Unit
(ALU) by generating an ALU version with TMR for the most
executed instructions of each tested application. Marques et
al. [22] propose a fault-tolerant architecture that uses two
distinct processors (RISC-V and Arm) to detect and correct
faults. The Authors applied the dual-core lockstep (DCLS)
technique followed by a return to a recovery point in case of
inconsistency between the two processor results.

Works based on RTL simulation focus on processor ob-
servability. For example, Mohseni and Reviriego [23] analyze
the fault tolerance of each RISC-V module. Gupta et al. [24]
apply error correction codes (ECCs) to protect registers and
memories and spatial-temporal techniques (i.e., dual modular
redundancy - DMR and delays) to protect the ALU. Then,
they quantify how these techniques help the architecture
continue operating even with a certain degree of degradation
by applying transient and permanent faults. With the same
fault tolerance bias, Santos et al. [25] implement TMR to
protect the ALU and Hamming code to protect the memory.

Regarding VP-based works, Abich et al. [14] analyze the
quality of results from two high-level abstraction fault in-
jection environments: OVPsim and gem5. They recommend
using these FI environments early in the design phase as
they are 1000× faster than cycle-accurate simulators (i.e.,
RTL level) and up to 312× faster than dedicated simulators
(e.g., gem5). They also preserve more than 90% accuracy in
the analysis of SEU faults in computer systems. Bandeira et
al. [26] propose a non-intrusive fault injection environment for
fast reliability assessment of SEU-type faults. Authors validate
the environment through an automotive case study executing
up to 43 billion instructions. Results show that the isolation
of critical application functions can lead to a more efficient
error analysis, reducing masked faults by 28%.

The present work stands out against the others in Table I

LODÉA et al.: EARLY SOFT ERROR RELIABILITY ANALYSIS ON RISC-V 2141

as the first to explore the reliability of the RISC-V proces-
sor using fault injection through a virtual platform. Another
original contribution is a large number of applications (i.e.,
25) and the number of faults injected in the experiments
(a total of 850,000 faults) compared to the works reported
in Table I, ensuring a broad coverage and high statistical
relevance to results. Additionally, RTL simulation is employed
as a reference, and a synthesizable RISC-V version is provided
for future comparisons and explorations.

III. FAULT INJECTION METHODOLOGY

This section describes: (i) the original SOFIA framework;
(ii) the SOFIA’s extension to support the RISC-V processor;
(iii) the PUCRS-RV, an open-source implementation of the
RISC-V processor with support for the RV32I instruction set;
and (iv) the adopted fault injection classification.

A. SOFIA Framework

The SOFIA framework [26] provides fault injection meth-
ods that emulate single bit upsets (SBUs) by injecting faults
into different system parts such as registers, physical mem-
ory, application virtual memory, function calls, application
variables, and data structures. Another remarkable feature is
the possibility of isolating specific parts of the application’s
runtime, allowing individual and dynamic analysis of the
executed instructions. In its previous version, SOFIA only
supported ARM architectures, the present work extends this
support to RISC-V processors.

Fig. 1 illustrates the five phases of the SOFIA framework.
Phase 1 compiles the application’s source code and generates
the object file. Phase 2 is the flawless execution, where the
application is simulated to verify its correctness and reference
information is extracted (i.e. register context and final memory
state). SOFIA may also acquire additional information during
this phase depending on the fault injection technique selected
(e.g. functions and variable addresses). Phase 3 calls a SOFIA
module that generates a list containing the fault injection
configurations, i.e. fault injection time, register name, and
target bit for each fault injection experiment. In SOFIA, the
FI configuration is based on a uniform random function, a
well-accepted fault injection technique that covers most faults
in a system with low computational cost [27]. In Phase 4, the
SOFIA FI module executes the fault experiments, by reading
the fault characteristics and inserting the inverted bit according
to the information provided in Phase 3. After each execution,
another SOFIA module compares its result (e.g. the number
of instructions executed, the register context, and the memory
state) with the flawless execution and generates an individual
report. Finally, Phase 5 gathers all the individual reports
(i.e. reliability results from each experiment) into a single
file. Then, SOFIA performs several statistical analyses (e.g.
percentage of fault types, worst and best cases) and produces
individual and collective graphs that help engineers understand
the soft error reliability of the underlying architecture.

Fig 1. The five phases of the SOFIA framework.

B. Proposed SOFIA Extension

The first phases of the original SOFIA framework flow
were modified to support the reliability assessment of transient
faults in RISC-V processors. This work selected the Multicore
Developer (M*DEV) virtual platform [28] as reference. In so
doing, SOFIA can now use all processor models supported by
M*DEV and their execution reports.

In Phase 1, the Makefile was adapted to support the
compilation of any version of the RISC-V processor ISA
options. In Phase 2, SOFIA manages the flawless execution
in the M*DEV. Originally, the SOFIA framework supported
only virtual platforms using Arm processor models. Thus,
the script tcl (referring to the platform configuration) has
been rewritten to be generic, providing support to RISC-V
processors and paving the way for new processor models.
The result is an application execution report on the RISC-
V processor (i.e. reference information), as Fig. 1 shows.
In addition to these modifications, SOFIA must contain a
description of the target processor registers to generate the
list with the fault injection configurations. This description
refers to the naming convention used by RISC-V registers
as specified in the application binary interface (ABI). For
example, this work uses the RV32I instruction set, which
assumes an organization with 32 general-purpose registers and
the program counter (pc) that may be faulty. Therefore, the
scripts have been changed to support this new register list,
renamed as follows: ra, sp, gp, tp, t0 – t6, s0 – s11, a0 – a7,
and pc. This set of modifications allowed injecting faults into
any available register of the RISC-V processor.

C. PUCRS-RV

The PUCRS-RV processor is a synchronous organization
of the RISC-V architecture, designed as a 5-stage pipeline,
in-order processor, with speculative capability. The RISC-
V processor derived from an asynchronous organization first
described by Sartori et al. [29] and implements the RV32I
instruction set, which is equivalent to the model available on
the M*DEV virtual platform [28].

Fig. 2 shows the block diagram of the PUCRS-RV proces-
sor. Later on, there is a description of some PUCRS-RV details
that facilitate replication on other virtual platforms (e.g. gem5).

Stage 1 is responsible for Instruction Fetch from memory.
The fetch unit identifies the stream and manages the pc reg-
ister, assuming the value of the subsequent memory position
(i.e. pc+4) or the address of a jump taken. The jump prediction
policy is “never jump”. Note that each instruction that leaves
Stage 1 is associated with a tag that will follow the instruction

2142 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 9, SEPTEMBER 2022

Fig 2. Block diagram of the PUCRS-RV processor, highlighting in blue the three processor execution loops.

to the last stage for validation. Then, the tag is incremented
whenever a jump is performed, signaling that the instruction
belongs to a new context.

Stage 2 is Instruction Decode, responsible for generating
control signals based on the object code of the instruction
fetched in Stage 1. Stage 3 is Operand Fetch and contains
the conflict detection mechanism (i.e. hazards) that employs a
queue of locked registers. If there are no conflicts, operands
are fetched from the register bank and propagated to the next
stage. Otherwise, bubbles (equivalent to NOP instructions) are
generated until the conflict is resolved by writing to the locked
register. Stage 4 is Instruction Execute and incorporates a
Dispatcher that sends operands only to the unit responsible
for that type of instruction.

The last stage of the pipeline is Retirement. The Retirement
Unit is responsible for removing the instruction from the
processor and closing the pipeline loops. The tag that accom-
panies the instruction is validated in this unit by comparing it
with the unit’s internal tag. If the tag matches, the instruction
can be executed. Otherwise, this indicates that they belong to
different contexts, i.e. that a jump was executed after fetching
that instruction, and its effects should be discarded.

Fig. 2 also illustrates the three loops of the RISC-V pro-
cessor execution flow. The 1st loop (label 1) controls the
overall execution flow. The 2nd loop (label 2) comprises the
3rd to the 5th stage of the pipeline and is a data loop. It
includes the fetching of operands from the register bank, the
instruction execution, and the last stage, which is eventually
written to the register bank. Finally, the 3rd loop (label 3)
comprises the mechanism for identifying data conflicts. If any
instruction entering the third stage has data coming from a
locked register, a conflict is identified, and bubbles are inserted
until the conflict resolves.

D. Fault Classification
This work adopts the fault classification proposed by Cho et

al. [11], which defines five possible behaviors for a system in
the presence of soft errors:

– Vanish: the output matches the expected result, and no
trace of the fault is left in the memory system or archi-
tectural state, i.e. the introduced fault is fully masked;

– Output Not Affected (ONA): the application output is
flawless. However, one or more bits of the architectural
state are incorrect;

– Output Memory Mismatch (OMM): the application ter-
minates without any indication of failure, but with a
resulting incorrect memory state;

– Unexpected Termination (UT): the application terminates
abnormally with an error indication;

– Hang: the application does not finish within a margin of
20% beyond the reference execution time.

IV. RESULTS

A. Experimental Setup
One of the main concerns in assessing a processor’s soft er-

ror reliability is having a realistic and broad coverage approach
to fault injection. This work seeks to ensure that the number
of fault injections has statistical relevance [30] by applying
the equations developed by Leveugle et al. [31]. Each test
campaign consists of 17,000 experiments with one bit-flip per
application. According to Leveugle’s equation, results present
a margin of error of 1% with a confidence level of 99%. On the
one hand, the confidence level guarantees that the same results
will be obtained if we repeat the experiments. On the other
hand, the margin of error indicates the percentage difference
between the results obtained and the expected value of the
soft error reliability. Furthermore, our results present greater
statistical relevance than most literature studies (Table I).

To ensure complete stimulus coverage for the RISC-V
processor, both for computationally demanding and memory
intensive algorithms, this work evaluated the soft error reli-
ability of the following 25 applications from the Mälardalen
WCET benchmark suit [32]: (A) peakspeed, (B) fibonacci, (C)
insert_sort, (D) binary_search, (E) crc, (F) bubble, (G) usqrt,
(H) compress, (I) jfdct_int, (J) bit_manipulation, (K) petri_net,
(L) switch_cases, (M) blowfish, (N) harm, (O) counts, (P) mdc,
(Q) hanoi, (R) expint, (S) factorial, (T) ud, (U) matrix_mult,
(V) edn, (W) adpcm,(X) fdct, and (Y) prime.

B. Simulation Performance Analysis
Similar to the analysis presented by Abich et al. [14], VP-

based fault injection campaigns can be 1000× faster than

LODÉA et al.: EARLY SOFT ERROR RELIABILITY ANALYSIS ON RISC-V 2143

TABLE II
ASSESSMENT OF FAULT INJECTION CAMPAIGNS DETAILING THE CHARACTERISTICS OF EACH APPLICATION (NUMBER OF REGISTERS, SIMULATION TIME

AND NUMBER OF INSTRUCTIONS); APPLICATION PROFILE (PERCENTAGE OF ARITHMETIC INSTRUCTIONS, UNCONDITIONAL INSTRUCTIONS,
CONDITIONAL INSTRUCTIONS AND MEMORY INSTRUCTIONS); AND APPLICATION RELIABILITY (I.E., VANISH, ONA, OMM, UT AND HANG).

Application Characteristics Application Profile Application Reliability

App # Reg. S. Time (ks) # Inst. Arit. Uncond. Cond. Memory Vanish ONA OMM UT Hang
O0 O2 O0 O2 O0 O2 O0 O2 O0 O2 O0 O2 O0 O2 O0 O2 O0 O2 O0 O2 O0 O2 O0 O2

A 22 23 1.13 0.86 19k 5k 5.8 11.4 0.3 1.2 2.8 10.1 91.1 77.3 59.7 54.0 17.3 15.0 19.0 26.5 2.3 2.4 1.7 2.1
B 22 22 1.21 0.88 266k 132k 21.8 28.8 0.2 0.1 7.3 14.4 70.7 56.7 59.7 65.0 18.0 18.2 18.4 11.6 2.2 3.4 1.7 1.8
C 22 23 1.23 0.87 221k 66k 38.9 15.2 4.5 13.6 9.1 28.7 47.5 42.5 59.6 53.4 18.4 18.2 18.2 20.1 2.3 2.5 1.5 5.8
D 22 22 1.28 0.86 136k 40k 31.4 49.8 4.3 2.4 12.2 36.2 52.1 11.6 60.2 55.9 18.4 20.8 16.7 19.0 2.5 2.3 2.2 2.0
E 22 23 1.38 0.92 188k 25k 35.7 70.9 3.0 0.3 17.4 17.6 43.9 11.2 59.8 57.9 18.3 14.4 17.3 22.2 2.3 2.4 2.3 3.1
F 22 22 1.41 0.91 225k 35k 39.9 15.2 0.1 0.2 4.5 28.3 55.5 56.3 58.5 53.1 17.8 18.0 18.8 19.2 2.6 2.1 2.3 7.6
G 22 22 1.47 0.95 194k 75k 34.3 77.6 0.6 0.6 7.3 18.4 57.8 3.4 61.0 56.5 18.2 19.9 17.4 16.0 1.4 2.1 2.0 5.5
H 22 28 1.64 1.23 186k 116k 47.4 18.2 1.6 1.3 5.5 8.6 45.5 71.9 68.8 76.9 17.5 13.0 7.3 3.0 1.9 2.2 4.5 4.9
I 22 30 1.72 1.12 339k 182k 51.6 80.0 0.2 0.3 3.0 5.4 45.2 14.3 58.3 69.8 17.8 1.8 19.3 21.1 2.6 2.3 2.0 5.0
J 22 27 1.76 1.14 304k 112k 36.4 60.2 2.5 0.6 5.7 14.8 55.4 24.4 61.8 69.9 17.9 12.9 15.9 7.6 2.6 2.7 1.8 6.9
K 23 27 1.94 1.42 149k 90k 28.3 0.2 0.1 10.5 21.0 34.4 50.6 54.9 59.6 59.5 18.0 18.2 19.7 17.7 2.0 2.4 0.7 2.2
L 22 22 1.95 0.92 366k 70k 34.8 49.1 10.1 1.0 9.9 48.6 45.2 1.3 59.4 54.3 17.0 17.9 18.6 18.4 2.5 2.2 2.5 7.2
M 22 26 1.99 1.30 904k 276k 40.6 74.7 2.0 0.4 1.2 3.7 56.2 21.2 61.5 55.9 15.7 9.6 18.5 22.9 3.1 2.9 1.2 8.7
N 22 22 2.00 1.05 509k 249k 28.0 35.7 9.9 9.6 16.8 34.4 45.3 20.3 62.3 61.4 18.4 19.9 14.5 6.7 1.8 1.9 3.0 10.1
O 22 23 2.07 1.60 445k 274k 46.4 48.7 4.9 4.6 22.6 36.5 26.1 10.2 60.6 62.3 17.0 14.8 17.2 13.5 2.6 2.9 2.6 6.5
P 22 22 2.28 1.12 570k 256k 32.4 33.9 10.1 9.5 26.7 34.3 30.8 22.3 59.0 58.7 19.5 22.9 16.6 9.4 2.5 3.0 2.4 6.0
Q 22 22 2.28 1.55 754k 368k 22.7 15.6 9.1 11.1 4.6 8.9 63.6 64.4 62.1 65.9 17.5 18.3 15.6 9.6 1.4 1.5 3.4 4.7
R 22 22 2.38 1.58 652k 459k 26.4 33.1 11.6 16.2 19.7 27.1 42.3 23.6 60.9 66.3 18.0 20.9 17.1 4.7 1.9 2.2 2.1 5.9
S 22 22 2.42 0.87 734k 4k 37.0 31.9 9.4 1.3 17.6 31.8 36.0 35.0 60.8 56.6 19.4 19.2 16.0 18.6 1.6 2.1 2.2 3.5
T 22 26 2.52 1.17 744k 265k 47.5 43.8 2.9 6.9 10.1 23.2 39.5 26.1 58.9 67.7 19.7 16.0 17.5 4.5 1.6 2.2 2.3 9.6
U 22 22 2.53 1.91 1.0M 685k 55.4 57.4 2.0 2.8 20.8 32.6 21.8 7.2 58.6 56.8 17.2 17.8 20.1 12.4 1.9 2.7 2.2 10.3
V 23 29 2.98 2.42 1.0M 819k 56.6 61.0 1.4 1.6 29.6 33.5 12.4 3.9 60.1 72.9 17.0 6.3 18.5 12.9 2.4 2.6 2.0 5.3
W 22 25 6.64 4.12 2.8M 1.7M 56.6 57.2 2.3 2.6 32.6 35.6 8.5 4.6 60.3 62.3 16.6 13.4 18.9 19.7 2.1 2.4 2.1 2.2
X 22 30 7.00 1.37 3.0M 291k 57.6 76.0 1.3 0.1 28.6 4.3 12.5 19.6 57.2 75.2 18.5 1.6 19.9 17.9 2.5 2.4 1.9 2.9
Y 22 22 7.85 7.48 3.4M 2.9M 47.7 52.0 4.1 3.5 34.0 38.2 14.2 6.3 59.8 58.3 19.9 23.6 15.5 12.6 2.5 3.0 2.3 2.5

Fig 3. Simulation time of the RISC-V processor on M*DEV and RTL level.

cycle-accurate simulator campaigns. At the same time, they
preserve the soft error reliability accuracy between different
simulator abstractions with a mismatch below 10%. Fig. 3
shows the simulation times on the M*DEV virtual plat-
form [28] and the RTL level of the RISC-V processor. The
results corroborate those presented in [14] and show superior
simulation performance using the RISC-V processor compared
to the Arm architecture.

C. RISC-V Processor Reliability Analysis

In the initial design phase, software engineers rely on com-
piler parameters for specific purposes, e.g., −O0 to produce
the original design without optimizations or −O2 to improve
application performance. However, there is no compiler pa-
rameter to improve application reliability, nor is it known how
much a compiler parameter affects application reliability.

Fig. 4 shows the mean and covariance of faults of the
application set using two compiler parameters (−O0 and
−O2). Note that we chose the compiler parameter −O2

Fig 4. Mean and covariance of faults of the application set.

instead of −O3 because its optimizations focus on improv-
ing performance without significantly increasing code size,
making it more suitable for the Mälardalen WCET benchmark
algorithms [32]. Fig. 4 shows that applications’ reliability does
not significantly vary between the two compiler parameters. It
is only observed that the parameter −O2 causes more Hangs.
On the other hand, it is known that each application has
different behavior and the compiler’s optimization parameter
choice directly reflects on the reliability of the entire system.

Table II shows the results of the fault injection campaigns
for the 25 applications using two compiler parameters (−O0
and −O2). It presents the uniqueness of each application. For
example, application C showed better soft error reliability with
−O0 since it had an increased percentage of Vanish and a
decrease in other fault types. On the other hand, application
H showed better soft error reliability with −O2.

Due to the different applications’ characteristics, Table II
shows the influence that the compiler parameter has on the
application performance and the memory footprint used by

2144 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 9, SEPTEMBER 2022

the object code, where the −O2 parameter employs more
registers to provide better performance to the application.
Furthermore, the compiler’s optimization parameter choice im-
pacts the change in the generated application profile, changing
its susceptibility to soft errors.

Table II shows how the compiler parameters affect the
application profile. On the one hand, choosing the −O2
parameter over −O0 increases the percentage of conditional
instructions, the only exception being application X. On the
other hand, in more than 80% of cases, this choice also
decreases the percentage of memory instructions, and in 77%
of cases increases arithmetic instructions.

The soft error reliability analysis shown in Table II presents
that application H has the best reliability on the RISC-V
processor using the two compiler parameters (−O0 and −O2).
One indication is the low percentage of OMM in both cases.
Furthermore, the UT has low variation among all applications,
indicating that the susceptibility to soft errors is more related to
the RISC-V processor architecture than the application profile.

On the other hand, reliability-specific results show that N, T,
and U applications present the highest percentages of Hangs
(around 10%) caused by the −O2 parameter, which were
influenced by the increase in conditional instructions and the
decrease in memory instructions.

Another factor that causes reduced reliability is shown in
cases with a low percentage of Vanish. These applications
generally increase the arithmetic instructions and decrease the
memory instructions. It suggests that a register that had a
bit flip may have been used in computations (i.e., arithmetic
operations) before being stored in memory, making it easier
for the fault to become a failure in the RISC-V processor. The
exceptions are C, F, K, and S applications. In these cases,
the increase in conditional instructions outweighs the rise in
arithmetic instructions, suggesting that faulty registers directly
affect the application’s selection and control, making these
applications less fault-tolerant.

These results show the need to analyze case by case.
Therefore, extending a fault injection environment in the early
design phases of RISC-V-based projects is imperative. This
environment helps software engineers search for more fault-
tolerant applications.

V. CONCLUSIONS

This work extended the SOFIA framework and investigated
the soft error reliability of 25 applications running on a RISC-
V processor. Evaluations using different compiler parameters
show that if, on the one hand, performance-oriented parameters
(−O2) cause more faults of Hang type. On the other hand,
software engineers must evaluate the compiler parameters
on a case-by-case basis to find the best balance between
performance and reliability because different application char-
acteristics affect processor reliability differently. Furthermore,
PUCRS-RV is presented here, an open-source synthesizable
implementation of the RISC-V processor supporting the RV32I
instruction set. The SOFIA framework characterized this pro-
cessor to help software engineers develop designs based on
fault-tolerant RISC-V processors.

ACKNOWLEDGMENT

This work was partially funded by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior -
Brasil (CAPES) - Finance Code 001, CNPq (grants no.
312917/2018-0, no. 309762/2020-0 and no. 317087/2021-5),
and FAPERGS.

REFERENCES

[1] Z. Zou, Y. Jin, P. Nevalainen, Y. Huan, J. Heikkonen, and T. Westerlund,
“Edge and Fog Computing Enabled AI for IoT - An Overview,” in
AICAS, 2019, pp. 51–56.

[2] P.-K. Huang and S. Ghiasi, “Power-Aware Compilation for Embedded
Processors with Dynamic Voltage Scaling and Adaptive Body Biasing
Capabilities,” in DATE, 2006, pp. 1–2.

[3] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The RISC-
V Instruction Set Manual, Volume I: UserLevel ISA, Version 2.1,”
UCB/EECS-2016-118, UC Berkeley, Tech. Rep., 2016.

[4] S. Greengard, “Will RISC-V Revolutionize Computing?” Communica-
tions of the ACM, vol. 63, no. 5, pp. 30–32, 2020.

[5] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. Debardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy, S. Leyf-
fer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley, and
E. V. Hensbergen, “Addressing Failures in Exascale Computing,” Inter-
national Journal of High Performance Computing Applications, vol. 28,
no. 2, pp. 129–173, 2014.

[6] F. R. da Rosa, R. Garibotti, L. Ost, and R. Reis, “Using Machine
Learning Techniques to Evaluate Multicore Soft Error Reliability,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 6,
pp. 2151–2164, 2019.

[7] M. G. Trindade, R. P. Bastos, R. Garibotti, L. Ost, M. Letiche, and
J. Beaucour, “Assessment of Machine Learning Algorithms for Near-
Sensor Computing under Radiation Soft Errors,” in ICECS, 2020, pp.
1–4.

[8] V. Bandeira, J. Sampford, R. Garibotti, M. G. Trindade, R. P. Bastos,
R. Reis, and L. Ost, “Impact of radiation-induced soft error on embedded
cryptography algorithms,” Microelectronics Reliability, p. 114349, 2021.

[9] G. Abich, J. Gava, R. Garibotti, R. Reis, and L. Ost, “Applying
Lightweight Soft Error Mitigation Techniques to Embedded Mixed
Precision Deep Neural Networks,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 11, pp. 4772–4782, 2021.

[10] G. Abich, R. Garibotti, R. Reis, and L. Ost, “The Impact of Soft Errors
in Memory Units of Edge Devices Executing Convolutional Neural
Networks,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 69, no. 3, pp. 679–683, 2022.

[11] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative Evaluation of Soft Error Injection Techniques for Robust
System Design,” in DAC, 2013, pp. 1–10.

[12] A. Akram, V. Akella, S. Peisert, and J. Lowe-Power, “Enabling
Design Space Exploration for RISC-V Secure Compute Environments,”
Berkeley Lab., 2022. [Online]. Available: https://escholarship.org/uc/
item/0nt7h5jm

[13] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas,
“GemFI: A Fault Injection Tool for Studying the Behavior of Appli-
cations on Unreliable Substrates,” in DSN, 2014, pp. 622–629.

[14] G. Abich, R. Garibotti, V. Bandeira, F. Rosa, J. Gava, F. Bortolon,
G. Medeiros, F. G. Moraes, R. Reis, and L. Ost, “Evaluation of the soft
error assessment consistency of a JIT-based virtual platform simulator,”
IET Computers & Digital Techniques, vol. 15, no. 2, pp. 125–142, 2021.

[15]
[16] A. E. Wilson and M. Wirthlin, “Neutron Radiation Testing of Fault

Tolerant RISC-V Soft Processor on Xilinx SRAM-based FPGAs,” in
SCC, 2019, pp. 25–32.

[17] A. B. de Oliveira, L. A. Tambara, F. Benevenuti, L. A. C. Benites,
N. Added, V. A. P. Aguiar, N. H. Medina, M. A. G. Silveira, and F. L.
Kastensmidt, “Evaluating Soft Core RISC-V Processor in SRAM-Based
FPGA Under Radiation Effects,” IEEE Transactions on Nuclear Science,
vol. 67, no. 7, pp. 1503–1510, 2020.

[18] A. Ramos, J. A. Maestro, and P. Reviriego, “Characterizing a RISC-V
SRAM-based FPGA implementation against Single Event Upsets using
fault injection,” Microelectronics Reliability, vol. 78, pp. 205–211, 2017.

https://escholarship.org/uc/item/0nt7h5jm
https://escholarship.org/uc/item/0nt7h5jm

LODÉA et al.: EARLY SOFT ERROR RELIABILITY ANALYSIS ON RISC-V 2145

[19] H. Cho, “Impact of Microarchitectural Differences of RISC-V Processor
Cores on Soft Error Effects,” IEEE Access, vol. 6, pp. 41 302–41 313,
2018.

[20] A. Ramos, R. G. Toral, P. Reviriego, and J. A. Maestro, “An ALU
Protection Methodology for Soft Processors on SRAM-Based FPGAs,”
IEEE Transactions on Computers, vol. 68, no. 9, pp. 1404–1410, 2019.

[21] I. Wali, A. Sánchez-Macián, A. Ramos, and J. A. Maestro, “Analyzing
the impact of the Operating System on the Reliability of a RISC-V
FPGA Implementation,” in ICECS, 2020, pp. 1–4.

[22] I. Marques, C. Rodrigues, A. Tavares, S. Pinto, and T. Gomes, “Lock-V:
A heterogeneous fault tolerance architecture based on Arm and RISC-
V,” Microelectronics Reliability, vol. 120, p. 114120, 2021.

[23] Z. Mohseni and P. Reviriego, “Reliability characterization and activity
analysis of lowRISC internal modules against single event upsets using
fault injection and RTL simulation,” Microprocessors and Microsystems,
vol. 71, p. 102871, 2019.

[24] S. Gupta, N. Gala, G. S. Madhusudan, and V. Kamakoti, “SHAKTI-F: A
Fault Tolerant Microprocessor Architecture,” in ATS, 2015, pp. 163–168.

[25] D. A. Santos, L. M. Luza, C. A. Zeferino, L. Dilillo, and D. R. Melo,
“A Low-Cost Fault-Tolerant RISC-V Processor for Space Systems,” in
DTIS, 2020, pp. 1–5.

[26] V. Bandeira, F. Rosa, R. Reis, and L. Ost, “Non-intrusive Fault Injection
Techniques for Efficient Soft Error Vulnerability Analysis,” in VLSI-SoC,
2019, pp. 123–128.

[27] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
Soft Error Reliability on the Cheap,” in ASPLOS, 2010, pp. 385–396.

[28] Imperas, “DEV - Virtual Platform Development and Sim-
ulation,” 2022. [Online]. Available: https://www.imperas.com/
dev-virtual-platform-development-and-simulation

[29] M. L. L. Sartori and N. L. V. Calazans, “Go Functional Model for a
RISC-V Asynchronous Organisation - ARV,” in ICECS, 2017, pp. 381–
348.

[30] M. Krzywinski and N. Altman, “Points of significance: Significance, P
values and t-tests,” Nature Methods, vol. 10, no. 11, pp. 1041–1042,
2013.

[31] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical Fault
Injection: Quantified Error and Confidence,” in DATE, 2009, pp. 502–
506.

[32] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen
WCET benchmarks: past, present and future,” in WCET, 2010, pp. 136–
146.

Nicolas Lodéa received a B.Sc. degree in Computer
Engineering in 2019 from the University of Passo
Fundo, Brazil. Currently, he is an M.Sc. student at
the PPGCC at the PUCRS University, Brazil. His
research focus is on soft error simulation with virtual
platforms.

Willian Nunes is an undergraduate student of Com-
puter Engineering at PUCRS. He has participated
in undergraduate research programs funded by gov-
ernment agencies. His research interests are in the
areas of computer architecture, Microelectronics and
non-synchronous circuits.

Vitor Zanini is an undergraduate student of Com-
puter Engineering at PUCRS. He participates in
a scientific initiation program at the Autonomous
Systems Laboratory. His research interests are in
the areas of computer architecture, robotics and
embedded systems.

Marcos L. L. Sartori received a B.S. degree in
Computer Engineering (2017) and an M.Sc. degree
in Computer Science (2019) from PUCRS, Brazil.
He is currently pursuing a Ph.D. in Computer Sci-
ence at the same institution. His research interests
include non-synchronous circuits, computer archi-
tecture, EDA techniques and tools. He is a Student
Member of the IEEE and of the Brazilian Computer
Society (SBC).

Luciano Ost is currently a Faculty Member with
Loughborough University’s Wolfson School - UK.
He received his Ph.D. degree in Computer Science
from PUCRS, Brazil in 2010. During his Ph.D.,
Dr. Ost worked as an invited researcher at the
Microelectronic Systems Institute of the Technische
Universitaet Darmstadt (from 2007 to 2008) and at
the University of York (October 2009). After the
completion of his doctorate, he worked as a research
assistant (2 years) and then as an assistant professor
(2 years) at the University of Montpellier II in

France. He has authored more than 90 papers and his research is devoted
to advancing hardware and software architectures to improve performance,
security, and reliability of life-critical and multiprocessing embedded systems.

Ney L. V. Calazans holds a Ph.D. degree in Micro-
electronics from UCL-Belgium, obtained in 1993,
and an M.Sc. in Computer Science and a BS in
Electrical Engineering, both from UFRGS (Brazil),
resp. obtained in 1985 and in 1988. He is a Pro-
fessor at the PUCRS (Brazil) where he works since
1986. Since 1994 he is a permanent member of the
CS graduate program (PPGCC) at PUCRS. During
the 2014-2015 period he followed a Post-Doctorate
Senior stage at the University of Southern California
(USC) in Los Angeles, CA (USA). Prof. Calazans

research interests include non-synchronous circuits, intrachip communication
networks and EDA techniques and tools. He has authored around 200
publications on his fields of interest. He is a CNPq Researcher (PQ-1C), a
Senior Member of the IEEE and a Member of the Brazilian Computer Society
(SBC) and of the Brazilian Society of Microelectronics (SBMicro).

Rafael Garibotti (M’14–SM’22) is an Associate
Professor at PUCRS University. Formerly he was
a Visiting Scholar at Université Grenoble Alpes,
France. He was also a Postdoctoral Fellow at both
the prestigious School of Engineering and Applied
Sciences of Harvard University, US and UFRGS,
Brazil. He received his Ph.D. and MSc. Degree in
Microelectronics, respectively from the University of
Montpellier and EMSE, France and his BSc. Degree
in Computer Engineering from PUCRS University.
He is a distinguished Brazilian researcher (CNPq

PQ-2 grant). His research activity focuses on AI safety, robotics and au-
tonomous systems, multicore architectures and robust deep learning.

César Marcon (SM’19) is a Professor at PUCRS
University, Brazil since 1995. He received his Ph.D.
degree in Computer Science from the Federal Uni-
versity of Rio Grande do Sul in 2005. Professor
Marcon is a Senior Member of the Institute of
Electrical and Electronics Engineers (IEEE) and a
member of the Association for Computing Machin-
ery (ACM) and Brazilian Computer Society (SBC).
He is a distinguished Brazilian researcher with a
CNPq PQ-2 grant. He has more than 150 papers
published in prestigious journals and conference

proceedings. Since 2005, prof. Marcon coordinated several projects in health,
telecommunications, and microelectronics areas with a total budget exceeding
US$2 million.

https://www.imperas.com/dev-virtual-platform-development-and-simulation
https://www.imperas.com/dev-virtual-platform-development-and-simulation

	Introduction
	Related Works
	Fault Injection Methodology
	SOFIA Framework
	Proposed SOFIA Extension
	PUCRS-RV
	Fault Classification

	Results
	Experimental Setup
	Simulation Performance Analysis
	RISC-V Processor Reliability Analysis

	Conclusions
	References
	Biographies
	Nicolas Lodéa
	Willian Nunes
	Vitor Zanini
	Marcos L. L. Sartori
	Luciano Ost
	Ney L. V. Calazans
	Rafael Garibotti
	César Marcon

