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Analysis and Design of 3 kW Axial Flux Permanent
Magnet Synchronous Motor for Electric Car

G. R. Bruzinga (), A. J. Sguarezi Filho

Abstract—Axial flux topology machines are extremely advan-
tageous when used in electric vehicles. The machine design of
this topology presents some challenges, considering that it must
meet the vehicle’s and track’s prerequisites. This work presents a
design methodology for axial flux machines focusing on electrical
traction based on the comparison between the analytical and
computational resolution by the finite element method.

Based on the pre-established resistant torque and power, as
well as the rated data of the vehicle, an analytical method is
used that allows the determination of the main parameters of
a permanent magnets axial flux machine. Then, the principle
of magnetic circuit theory was applied to determine the flux
densities in the ferromagnetic material of the armature, rotor,
permanent magnets and air gap, the latter, as a starting point, is
adopted at its maximum value and from this, the flux densities
on other parts of the machine are estimated. After flux densities
estimation, it is verified that the induction levels achieved are
under the saturation induction level in ferromagnetic material,
enabling the development of a model in computational simulation
software with numerical resolution by the finite element method
Ansys Maxwell® in magnetostatic regime. Once the simulation
was done, the inductions were compared with those obtained by
analytical method. It is verified that the absolute errors obtained
between the two methods present values less than 10%, resulting
in the construction of a 3 kW prototype for installation in a
vehicle for educational purposes. The bench tests carried out
on the prototype and the test on the track up to the adopted
maximum limit speed indicated that the torque results reached
the prerequisites of 30 km/h on the track.

Index Terms—Axial Flux Motor, Finite Element Method,
PMSM, Electric Vehicle.

I. INTRODUCTION

ne of the main uses of electric motors in recent decades

has been in vehicle traction systems [1]. In such ap-
plications, an alternative is the use of machines with different
topologies [2] that not only address the issue of physical space
but also increase the power density, among them, the axial
flux topology machines [3], [4]. One of the main advantages
of this topology is the physical space it occupies [5], [6],
since its axial length is shortened compared to radial flux
topology machines [7], in addition to the fact that they have
higher power and torque densities [8], [9] when the space
is limited. In addition, the axial flux machines has some
advantages as robustness and compact shape. The magnets are
manufactured with flat surfaces. In such machines the air gap
can be adjusted during and after the assembly step. Besides the
fact the possibility of using several modules on the same drive
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axle. In another hand, some disadvantages as compromised
structural stability due to the size of the discs [10]. Also due
to the large discs, they have a high moment of inertia. Another
issue is that the contact surface between rotor and shaft does
not increase proportionally with its output power, increasing
the possibility of vibration, being one of the main causes of
failures in disk-type motors.

II. ASPECTS OF AXIAL AND RADIAL MACHINES

The axial flux brushless permanent magnet machines (AF-
BPM), also known as disk-type machines, are only preferably
used in situations where the axial space is limited, specially
inside the wheels in electric cars. Regarding the number of
disks, the most common topologies are single-sided, double-
sided or multi-stage. Fig 1 shows the classification of axial
flux machines in terms of number of discs:
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Fig. 1. Classification of AFBPM Machines.

In these topologies, the ease of assembly of the magnets
stands out, since they are manufactured with flat surfaces
and, due to the fact that the air gap is flat, it allows its
distance adjustment during and after assembly. Due to the
large discs, the structural stability is slightly lower compared
to radial machines. Single-sided machines (SSAFBPM) have a
simpler construction of the 3 arrangements, however, they have
lower torque capacity compared to double-sided machines
(DSAFBPM). The DSAFBPM machines feature twice the
power and the attraction forces between stator and rotor are
balanced. Another advantage is the possibility of redundancy
when connected in parallel, where one stator can work even
if the other disc fails. Multi-stage machines (MSAFBPM), are
normally used on machines with power in the range of 300 kW
or more and, since the machine power varies depending on the
radius of the disk, this increase must be limited by inserting
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more discs, for stability issues, mainly in the mechanical joints
between disc-shaft and the axial force suffered by the bearings.

To solve the space issue, particularly in vehicular electric
traction, the AFBPM machines has several assembly possi-
bilities, regarding the position of the electric machine to the
traction system. Depending on the available space and the
power required, these possibilities are shown in Fig.2:
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convenient. In situations with high mechanical load, it has a
higher torque than both transverse-flux (TFBPM) and radial-
flux (RFBPM) machines over a wide speed range and with
high efficiency [11], [12].

III. ANALYTICAL METHOD FLOWCHART

Fig. 3 shows the main steps of the methodology adopted
to the analytical method, where the blocks of the flowchart
represent the calculations and assumptions from the nominal
values of the track, the vehicle and the implementation of the
theory of magnetic circuits, that were considered the core of
the method.
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Fig. 2. Installation options for AFBPM motors.

The table I shows the main dimensions and characteristics
of a machine of the same power, speed, voltage, and frequency
range as a commonly sold motor compared to the SSAFBPM
machine in this project.

TABLE 1
COMPARISON BETWEEN AXIAL AND RADIAL FLUX
MACHINES
Quantity Axial Radial
Rated Power [kWW] 3 3
Rated Voltage [V'] 220 220
Rated Speed [rpm] 1200 1150
Number of Poles 6 6
Rated Frequency [H z] 60 60
Rated Current [A] 8,75 12,6
Service Factor 1,00 1,15

Efficiency [%] 90 83

Motor Mass [kg] 27,0 41,2
Motor Diameter [m] 0,26 0,21
Motor Length [m/] 0,15 0,39
Power Density [W/kg] 111,1 72,8
Torque-Current Ratio [N.m/A] 1,22 0,97

In terms of mechanical power, the axial-flux machine with
toroidal armature compared to the conventional radial-flux
machine for applications with limited axial length is more
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Fig. 3. Flowchart of Analytical Method.

IV. TRACK RESISTANT POWER AND TORQUE

At the traction sizing stage, it is essential that the power
of the electric machine is not under or oversized [13] by the
already mentioned limiting factors, and also taking into ac-
count the condition of the track [14]. Thus, the resistant force,
power and torque required for the SSAFBPM machine design
were calculated, in order to meet the pre-established runway
conditions [15], such as aerodynamic drag, the coefficient of
friction and the slope. For this purpose, the diagram of forces
acting on the vehicle was used, as shown in Fig. 4.

It can be observed the resulting force in the direction of the
longitudinal axis x:

FR:Fad+Frr+Flncl+ Facel (1)

In (1) F is the resistant force resulting from the movement
of the vehicle, F,; is the aerodynamic drag resistant force, Fi.,
is the friction resistant force of the tires, F7,,; is the resistant
force due to the slope of the track and F..; is the force due to
the vehicle acceleration, all in V. Recall that the aerodynamic
drag force can be determined by:

Fad = Par - Af . Cd . (Vz + Vwind)z (2)
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Fig. 4. Forces Acting on the Vehicle.

The pgr, in (2), is the air density in kg/m?’, Ay is the
front area of the vehicle in m?2, Cj is the aerodynamic drag
coefficient, V is the vehicle speed and V;,q is the wind
speed, both in m/s. The friction force offered by the tires is:

cos(3) 3)

In (3), M, is the total mass of the vehicle in kg, g is the
acceleration of gravity in m/s?, y,, is the dynamic friction
coefficient and g is the slope angle of the track in degrees.
The coefficient of dynamic friction can be estimated according
to:

Frr:Mvmg'/Jfrr-

— kl
100

Where k5 and k3 can be determined respectively by (5) and
(6).
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The constant ky in (4), is the coefficient of tire pressure,
that varies depending on the type of tire, in the case of radial
tires it is 0.8, Ppy gy is the tire pressure in kPa, MV R is
the mass of the vehicle loaded per wheel in kg, V, and V4
in this expression are given in km/h.The resistant force due
to the slope of the track can be calculated as in (7):

sen(B) =M, . g . [(h.100)/c] (7)

In (7), h is the height of the unevenness and the constant
c is the standardized length of the ramp (c is equal to 100
meters). Table II presents the percentage slope value obtained
for an angle 3 of 3°.

ks

) (©)

ancl:MU - 9.

TABLE II
TRACK SLOPE 3

Angle 3 Slope (%)
3° 5.23

The resistant force in NN, due to the acceleration of the
vehicle can be calculated according to:

d
' dx(
Since it is an elastic tire, for the tire-track contact force to
occur, there must be a slip s not null, so that the coefficient
of friction varies depending on this slip, that is, w,.. = f(s).
So the slip s can be obtained by:

Facel - Mv VI) (8)

rg . w— Vg

= | )

rd . wW

Fig. 5 illustrates the behavior of static and dynamic friction
coefficients as a function of slip.
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Fig. 5. Behavior of static and dynamic friction coefficients.

The parameter ry, in Fig. 6, is the radius of the wheel
without deformation, r is the radius of the deformed wheel, r4
is the effective wheel radius, epranr is the displacement of
the normal force point and F'zpran is the normal component
of the force.
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Fig. 6. Detail of the Wheel.

Tire deformation can be estimated in (10):

p=1r9 — T (10)

The effective radius of the wheel can be approximated by:

ra=ro — (5) (11)

Due to the tire deformation, the contact point force of the
wheel to the ground undergoes a displacement from the center
of the wheel. Thus, the traction force can be obtained by the
coefficient of dynamic friction and the normal force exerted
on the front wheel.

Fy = Fyprant - for (12)

In this way, the total resistant power Ppr, obtained by (1),
can be determined by (13).
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Pr=F .V, (13)
Thus, the resistant torque is calculated according to (14):
Ve . 30.0,104
Tp = Pp | (———"—) (14)
™. Tq

For resistant force calculation, resistant power and resistant
torque, a conventional passenger vehicle for educational pur-
pose was considered. Table III shows the general vehicle data
and Fig. 7 illustrates the vehicle used for track test respectively.

TABLE III

DIDACTIC VEHICLE DATA
Parameter Quantity  Units
Vehicle Mass (M,) 650 kg
Front Area (Aj) 1,76 m?
Aerodynamic Drag Coefficient (Cy) 0,48 -
Dynamic Friction Coefficient (jtyr) 0,0107 -
Height of the Center of Gravity (hc.g.) 0,5 m
Regime Speed (Vp) 30 km/h
Radius of the Wheel with deformation - (rg) 0,3 m
Mass per Wheel (MV R) 162,5 kg
Acceleration Time (t4ce7) 30 s
Track Slope Angle (3) 3 degrees

\l

]

Fig. 7. Detail of vehicle used.

From data in Table III, it is possible to obtain the power
and torque behavior, respectively, as depicted in Fig. 8a and
Fig. 8b.

V. ELECTRIC MOTOR SIZING

The AFBPM machine specifically [16], does not require
the use of commutators and carbon brushes regarding the
excitation system [17]. The design and construction of a
machine with this particular topology, consists as a first step,
the sizing [18] through the resolution by analytical method as
function of rated data as well as through the an equivalent
magnetic circuit. The second step, a numerical solution by
finite element method through the electromagnetic simulation
software [19]-[21]. The third step consists of manufacturing
of the 3 kW prototype based on the two previous steps. Firstly
the size of the armature and rotor discs are calculated. From
these dimensions it is possible to estimate the electromagnetic
torque developed. As a starting point, the torque [22] derived
from the differential torque expression was used in (15):

dTd =5 ®dS . r (15)
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Fig. 8. Resistant Power and Torque for conditions in Table III.

In (15) & is the shear stress vector in N/m?, dS is the area
differential vector of the disc in m? and r is the radius of the
disc in m. Fig. 9 presents the disk dimensions and the vector

quantities.
'Y

=
B
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dr

Fig. 9. Details of rotor dimensions and vector quantities.

The area differential element can be defined in terms of the
differential arc and radius, thus, according to (16), results:
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dS=r.dr.dj (16)

Through (15) and (16), the differential developed torque,

can be determined by (17), becomes:
dTd =G ®r?. dF . df (17)

Integrating (17), the developed torque can be calculated,
according to (18):

Rour p2m Rour 27
/ / dTd :/ / o.r¥ dr.dfd (18)
RN 0 Rin 0

Solving (18) results:

TdZQW.U.(D;’ZUT—DﬁN)

Considering factor K as a relationship between the internal
and external diameters of the armature, in terms of Djy:

Diny = Dour - Kq

19)

(20)

By replacing (20) in (19) and putting in terms of Doy,
the developed torque can be determined by:

(1 - (Ka)®) . (Dour)®
24
Tangential stress o is the cross product, point by point,
between air gap flux density B, produced by the excitation
system and the linear electric current density A produced by
the armature, that is:

_27r.0.

Td =

2y

c=B.A (22)

Replacing (22) in (21) and in the air gap, assuming a
sinusoidal field distribution as well as the winding current,
for 1 disk, results:

V21
Td= == Buax . Apricaz - (1-Kd*) . (Déyr) (23)

Fig. 10 illustrates the dependence of the electromagnetic
developed torque as a function of 3 different values of linear
current densities and the outer radius of the disc for a maxi-
mum air gap flux density of 0.65 T' [23].

150 . . . .
3
A=20.000 e
3 -+ A=30.000 o
Z ==+ A=40.000 P .
@ 100} I o
= e -
=3 Cad o
|2 e .,r"
-
a
o 50}
[+
=
[1]
[a]
0
0.1 012 0.14 0.16

External Radius {(m)
Fig. 10. Torque developed as a function of external radius for different
linear current densities with constant induction.

In (23) Doy is the outer diameter of the disk in m, the
constant Agprcaz is the effective linear current density in

A.turns/m, the term Bjprax is the maximum air gap flux
density in T'. Therefore, based on (23), the outer diameter of
the disk can be determined according to (24).

) Td . 24
V2.1 . Bivax - Aprrcaz - (1 — Kd3)

The SSAFBPM machine topology used in this project can
be seen in Fig. 11. Fig. 11a, the concentrated toroidal armature
winding and Fig. 11b, the permanent magnets arrangement on
the rotor surface respectively.

(24)

Doyr =

a) b)

Fig. 11. a) Detail of the armature disk. b) Detail of the permanent
magnet rotor.

Fig. 12 shows the flux lines paths produced by the perma-
nent magnets and the simplified front view for magnetic circuit
established among the armature, the air gap, the magnets and
rotor. Through this circuit, the magnetic flux densities in the
sections described above are determined.

1010 Carbon Steel P>

1010 Carbon Steel <

(b)
Fig. 12. Flux Paths Established by Permanent Magnets.

The total magnetomotive force produced by the permanent
magnets [24] can be calculated by (25):
Foar = (> Rn) . ¢P(2)Lo

n=1

(25)

Based on Fig. 12, given the reluctance due to each section,
(25) can be rewritten as a function of reluctance of the air gap,
stator and rotor, that is:
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Fpy = (2 . Rg + Rgst + RROT) . OpPM (26)

Where the magnetic reluctance of the stator and rotor
becomes:

R=LyEebpro - (U . 5)71 27

In (27), Lyepro is the average length traveled by the
magnetic flux, u is the permeability of the material and S
is the cross section corresponding the flux passing through
the stator and rotor parts. In this way, the flux density can be
determined according to (28):

B dpm

=5 (28)

The field intensity obtained from the magnetization curve

visualized in Fig. 13 is:
H=B. (u)™* (29)
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Fig. 13. Magnetization curve of the SAE 1010 Carbon Steel material.

The stator and rotor magnetomotive forces can be obtained
from (30):

F=H.Lygpro (30)
The flux per pole can be determined according to (31):
¢polo = Bg . SP

In (31), Sp is the pole area, B, is the air gap flux density.
In the air gap, the magnetic reluctance becomes:

Ry=1g . (ug . Sy)~"

€1V

(32)

The parameter [, in (32), is the length of the air gap and S,
is the air gap area. Thus, magnetomotive can be determined
through:

F,=DB, . (u)™" .1, (33)

The air gap flux density in (33), can be calculated from
the magnet operating curve, since its relative permeability has
been determined [25], that is:

&

(34)

Uy =

=
<
S
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In (34), B, is the remanent flux density, H. is the coercive
magnetic field strength. In the rotor, sintered neodymium-iron-
boron (NdFeB-35) square permanent magnets were used. Its
characteristics are presented in table IV and depicted in Fig.
14.

TABLE 1V
PM MAIN PARAMETERS
Parameter Value
Remanent Flux Density (Br) - [1'] 1,21
Coercive Field (Hc) - [A/m] 859 k
BI[T]
B.-1,21
:
! Bor-0,43
1
1
H [A/m] —_—
I |
Hc-859 k | !
I I
Hop - 309,95 k

Fig. 14. Permanent Magnet BH Curve.

Therefore, the air gap flux density is calculated by

S l _
By=(By) [ ((g=) + ur . (5))70 (35
Spm lpm
In (35) Sy, is the permanent magnet area in mm? and

lpm is the length of the permanent magnet in mm. Table
V presents the rated data of the prototype and table VI the
dimensions obtained through (15) to (35). In order to make
possible operation at rated speed of 1200 rpm, the permanent
magnet excitation system must produce a B, of 0.65 T. In this
project, the air gap length as well as the rotor depth were fixed.
The B, depends on the operation point from the permanent
magnet curve. For this, firstly, the relative permeability value
is determined, according to (36):
21 1
859k ug
Thus, for an B, of 0.65 T, the area of the permanent magnet,

=1,120 (36)

in mm? can be determined through (37):
1,21 2,0 4
0,65 = 38036 T 1,120 . (6 35) = 2580, 6 (37
Spm )

The magnet dimensions, in millimeters, respectively are
50.8 x 50.8 x 6.35. Therefore, the operation flux density of
the magnet is:

3893, 6
2580, 6

Considering the operation of the magnet at the maximum
energy point, the coercive magnetic field strength is 309.95 k
A/m. Based on Fig. 12, Table V and Table VI, flux densities,
field strengths and magnetomotive force results, in each part
of the topology are presented in Table VII.

Bop = 0,65 .

=0,43 T (38)
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TABLE V

MOTOR RATED VALUES
Quantity Value
Rated Power [KW] 3
Rated Voltage [V'] 220
Number of Phases [m1] 3
Rated Speed [rpm] 1200
Rated Speed [rps] 20
Number of Poles 6
Rated Frequency [H z] 60
Rated Current [A] 8,75
RMS Electric Current Density (Agr) 10155
Maximum AirGap Flux Density (7") 0,65
Voltage Factor 0,9
Form Factor 2/
Concentraded Winding Factor 1
Efficiency adopted (1) 0,9

Power Factor adopted (cos ¢)
AirGap length (Ig) [mm]
Armature and Rotor Material

1
1
1010 Carbon Steel

TABLE VI
MAIN MOTOR PARAMETERS
Parameter Value
Armature Doy [mm] 260
Armature Dy [mm] 150
Wire (AWG) 18
Total Number of Coils 18
Number of Turns per Coil 15
Parallel Paths 4

TABLE VII

ELECTROMAGNETIC QUANTITIES OBTAINED FROM FIG. 12

Section B (T) H (A.turns/ecm) Ly ppro (cm) F (A.turns)
Armature 0,98 5,40 10,73 57,95
Rotor 1,38 12,12 10,73 130,08

Air Gap 0,65 5,1725 k 0,2 1034,5

PM 0,43 85,9 k 0,635 54,5 k

VI. FINITE ELEMENT METHOD SIMULATION

Fig. 15 illustrates the flowchart over the methodology used
for solving by numerical method, where the main steps were

presen

GH

Fig. 15
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. Flowchart of Numerical Method.
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—

Fig.16 show the simulation results by finite element method

in magnetostatic regime in the stator (a) and rotor (b) respec-
tively using Ansys Maxwel 13 software, where a color gradient
represents the flux density.
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Fig. 16. Armature and Rotor Flux Density.

Fig. 17 and Fig. 18 shows the exploratory line for sampling
the air gap flux density and the waveform obtained respec-
tively.
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Fig. 17. Exploratory Line.
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Fig. 18. Absolute Air Gap Flux Density - captured from exploratory
line.

Fig. 19 illustrates the line voltage and armature current
waveforms of the machine.
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Fig. 19. Voltage and Current Armature.

VII. RESULTS

Table VIII presents the analytical and simulated magnetic
induction levels and table IX, the analytical and simulated
developed torque values are highlighted. In this way, the
results has an error of nearly 5%. From Fig. 20 it can be seen
the prototype manufactured from the analytical and numerical
results and the test bench.

TABLE VIII
FLUX DENSITIES - RESULTS

Section Analytical [T] Simulation [T] Perc Abs Error [%]
Armature 0,98 0,93 - 1,03 5,10
Rotor 1,38 1,25 - 1,35 2,17
Air Gap 0,65 0,62 4,61
PM 0,43 0,42 - 0,52 2,32
TABLE IX
DEVELOPED TORQUE RESULTS
. Td [N.m] Td [N.m]
Quantity Analytical ~ Simulation Perc Abs Error [%]
Developed Torque 13,80 12,50 9,42

The results of the bench tests are presented in the table X
and XI respectively.

TABLE X

BENCH TEST RESULTS
f[Hz] 1I[A] N [rpm] Td [N.m]
10 1,54 182 2,10
20 3,05 410 3,86
30 4,56 585 6,15
40 6,07 792 8,12
50 7,58 1030 10,34
60 9,1 1200 11,12

VIII. DISCUSSION AND CONCLUSIONS

In this work, a comparison between analytical and numerical
method (via finite element method) was performed for the
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TABLE XI
BENCH TEST RESULTS AND SIMULATION

Quantity Simulation Bench Test Perc Abs Error [%]
Td [N.m] 12,50 11,12 11,04
Ta [A] (true rms) 8,75 9,10 4,00

Converter

Bench Test

Prototype Prototype

Fig. 20. Detail of the Prototype and Bench Test.

development of a brushless axial flux machine with a focus on
the use in electric traction of a passenger vehicle for teaching
purposes up to a speed of 30 km /h. The flux densities levels
obtained in all parts of the device, through analytical and
numerical methodology, have very similar values, in addition
to the fact that they indicate no magnetic saturation in any
part, a fact that would compromise the motor operation.
Additionally, the torque values obtained in the 3 methods
have a percentage error of 9.42 % between the analytical
and simulated method, as well as a percentage error of 11.04
% between the simulated method and that obtained from the
bench test validating the methodology. For this power range,
a radial topology machine could easily be used to replace the
internal combustion engine, given that space available in this
vehicle for educational purposes does not restrict the use of a
radial machine, however, its rear cover it is very close to the
car’s engine cover, practically leaning against it. The use of
AFBPM machines is strongly justified only in places where the
axial space is really reduced for a specific power, for instance
in wheels of electric or hybrid vehicles, and in these places,
SSAFBPM topology is most recommended. In vehicles with
other traction system configurations and different power ranges
(figure 2) axial motors can be used as long as the axial length
is in fact compromised.
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