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Brain Extraction in Multiple T1-Weighted Magnetic
Resonance Imaging slices using Digital Image

Processing Techniques
Kaue T. N. Duarte Marinara A. N. Moura Paulo S. Martins Marco A. G. de Carvalho

Abstract—The brain has been source of several studies in
the literature, mostly due to its importance both to predict
and to analyze certain diseases or conditions. Extracting the
brain from patient images for medical analysis may provide
useful information on prognosis. To this end, digital image
processing algorithms have been applied to the medical field with
a focus on the identification of the brain. This work proposes
a brain extraction framework based on three major steps: 1)
Data Acquisition; 2) Preprocessing; and 3) Largest Connected
Component extraction. Our data are acquired following the
OASIS protocol. The preprocessing step is applied in order
to enhance contrast and eliminate possible noise from the T1-
weighted MRI. Largest Connected Component extraction is
performed by initially detecting the largest element in the image
(i.e. the brain) and then by extracting it through mathematical
morphology operators. The unsupervised framework extracts the
brain in different axial slices without adjustments. The main
contribution of this work is the automatic identification of the
brain. It uses the brain in different brain slices and digital
processing algorithms. Five metrics were applied to evaluate our
results: Specificity, Recall, Accuracy, F-Measure, and Precision.
In our first experiment, two metrics resulted in more than 90%
in efficiency (Specificity and Precision), two of them surpassed
80% (F-Measure and Accuracy), and Sensitivity exceeded 70%.
Our second experiment compared our work with related work
in the literature, where it ranked 5th position in Sensitivity and
2nd position regarding Specificity

Index Terms—Image Processing, Skull Stripping, Brain Ex-
traction, Image Segmentation, Medical Imaging

I. INTRODUCTION

The brain is a complex organ in a human body, containing
more than 100 billion nerves with trillions of hidden

connections, called synapses. More effectively, studying the
brain and its functions has shown as a relevant tool to analyze
certain diseases and conditions. The need for reliable tools
that aims to extract the brain tissue has grown exponentially.
However, the brain extraction is a challenging task, mostly due
to its complexity and variation among distinct subjects.

Our goal in extracting the brain is to enable the automatic
evaluation of brain processes, as well as its study, in an
more efficient way, in order to support disease diagnosis,
and the identification of pathologies of the human brain, e.g.
Alzheimer‘s Disease, lesions and other diseases.

The advances in identifying brain regions using computa-
tional methods are well known in the literature since they
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Fig. 1. Brain Extraction on: (a) slice #70, and (b) slice #100, (c)
slice #130.

provide support to the radiologist analysis. This analysis is
often very time-consuming when handmade, thus delaying the
diagnosis and consequently the prognosis and early care.

To this date, most algorithms have focused on brain ex-
traction and processing using software tools. In some cases,
they apply Artificial Intelligence (AI) algorithms to this end.
Whereas this approach may result in higher accuracy, it may
imply a relatively high (and possibly prohibitive) computa-
tional cost for some applications.

In an attempt to circumvent this limitation in such cases,
our work focus exclusively on digital-image processing (DIP)
techniques to identify and extract the brain. We focus on
extracting the brain region in multiple slices in parallel, as
illustrated in Fig. 1. Notice that in the rightmost image (Fig.
1c), there are no cavities (i.e. ventricles), whereas in the central
image (Fig. 1b), the two lateral ventricles are shown. This is
because the lateral ventricles begin from the middle axial plane
(slice #100) and continue downwards (roughly until slice #60).
This is an important anatomical information for the extraction
of the brain, as explained in Section III.

The main goal of this paper is to present an approach that
extracts the brain (in axial projection) from the encephalon
in multiple slices using DIP techniques. Our approach mainly
consists in three steps: 1) Data Acquisition; 2) Preprocessing;
and 3) Largest Connected Component extraction. The Data
acquisition step consists in obtaining the images from OASIS
dataset. The preprocessing step consists in removing the
noise and enhancing the contrast of T1-weighted Magnetic
Resonance Imaging (MRI) scans. The brain-extraction step
uses techniques that identify the brain as a single component
and extract it. The novelty in the brain extraction consists in
using only DIP algorithms, thus accelerating the process.

Some contributions of this work can be highlighted: 1) this
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approach works for several axial slices of the same patient,
thus improving robustness; 2) the novelty in extracting the
brain in several slices using exclusively DIP processes and
grouping components, i.e. we do not resort to AI techniques
which may be prohibitive as mentioned earlier;

This work is organized as follows: In Section II we present
related work. Section III describes the workflow used to extract
the brain, and the metrics to evaluate the brain. Section IV
introduces our experiments, and the conclusion is presented
in Section V.

II. REVIEW OF RELATED WORK

The use of Mathematical Morphology (MM) has strength-
ened the detection of the brain and its component in order
to support the prediction of diseases. For example, Suresh [1]
suggested that brain identification may be obtained by a simple
thresholding followed by morphological opening to cut narrow
connections. The authors used the graph cut concept to remove
skull, scalp and meninx information using this concept of
removing narrow connections. They first segmented the image
keeping as many brain components united as possible. The
remaining narrow connections were removed by Isoperimetric
Graph Partitioning. Lastly, post-processing reinstate partial
volumes which were wrongly removed by the cut. This ap-
proach often considers the cerebellum as part of the cerebral
tissue. Their experiments showed better discrimination of brain
tissue regarding Brain Extraction Tool and others.

Roslan [2] investigated the strengths and weaknesses of the
Region Growing (RG) method and Mathematical Morphology
applications. The flow for MM follows standard pipelines: Bi-
narization, Morphological Segmentation, and Extraction of the
Largest Connected Component. The flow of RG consists of the
calculation of a seed pixel and the Region Growing between
similarities of neighbors. Regarding time, MM is highly faster
than RG. Additionally, RG depends on the definition of seed
pixels, even they calculated automatically, once the seed pixel
is wrongly defined, all the process is wasted. The accuracy is
visually analyzed in the images provided: MM showed better
discrimination between non-cerebral and cerebral tissues than
RG.

Somasundaram [3] generated two brain extraction methods
using region labeling and morphological operations. First, the
image is binarized using the Ridler’s method. Next, in order
to isolate the scalp and brain from the background, from the
skull and the CSF, the background is defined as a new label in
the so-called 3-labelling process. The rough brain portion is
extracted: 1) the scalp is identified due to its bright intensities;
2) the brain is generated by considering only the pixels that
is not assigned to the scalp. A standard pipeline is applied by
using morphological operators to remove the largest connected
component. This approach reached more than 93.8% in dice
similarity, sensitivity, and specificity.

Benson [4] cited the importance of working with morpho-
logical operators in different modalities (T1, T2, FLAIR).
They proposed a method that could be performed in these
three modalities on middle axial planes. The image is first
preprocessed by adjusting the contrast using morphological

operations. Skull stripping is achieved by the Otsu threshold-
ing and morphological operations. A binary image is gener-
ated and its largest connected component, which represents
the brain tissue, is extracted. Although the authors did not
presented any comparison with literature methods, they stated
the skull stripping process correctly distinct brain tissue from
non-brain tissues.

Wiek [5] proposed a 5-step-algorithm which extracts the
brain using mathematical morphology. Initially, a T1-weighted
MRI slice is thresholded using an algorithm that mixes global
and local information. Some morphological operators are
applied to enhance the brain. In order to identify the edges
highlighted in the previous step, the Canny Edge Detection
algorithm was adopted. The largest connected component,
which represents the brain, was then extracted. They compared
with literature solution for the same problem, however, certain
tools presented some limitations. The association of better
results was related to their threshold as one of the basic
processes.

Also, the images could be described by their histogram
distributions. In Balan [6], skull stripping is addressed in 3D
MRI’s. The technique used consists in the analysis of unique
histograms. In essence, their method attempts to partition the
histogram based on the maximum deviation obtained from a
Gaussian fit. First, the background is removed by analyzing
the peaks of the histogram, since the background presents the
same intensity values. A new histogram is generated and it is
submitted to a new histogram partition analysis, thus obtaining
white and gray matter. Once the thresholds are found, a rough
mask is generated. The pipeline of morphological operators
is applied, thus resulting in the brain. This technique reached
high results considering different dataset. Using Dice Similar-
ity, Sensitivity, and Specificity, in the first and third dataset it
reached more than 98%, and in the second and the forth one
it overpassed 92%.

Subudhi [7] defined a three-step algorithm that removes the
brain using Histogram Partitioning with Maximum Entropy
Divergence. First, the MRI scan is enhanced by using the Par-
ticle Swarm Optimization in order to extract the blood vessels.
The histogram partitioning is applied to find the gray-tone,
where lies the maximum entropy divergence, giving a thresh-
old. This threshold is used to generate a new histogram without
the background information. Next, the histogram is analyzed
to find a rough binary mask. At the end, a standard pipeline
using morphological operations and component extraction is
applied, thus yielding the brain tissue. They evaluated the
proposed algorithm using specific slice of the brain in both
enhanced and non-enhanced images, in terms of sensitivity,
specificity, precision, and accuracy. These metrics applied
to non-enhanced images reached 89.8%, 97.7%, 97.6%, and
93.7%, respectively. When applied to enhanced images, it
reached 100%, 95.8%, 96.1%, and 97.9%, respectively.

Among the work that introduce Artificial Intelligence into
skull stripping, Taherdangkoo [8] employed a semi-supervised
Artificial Bee Colony algorithm to remove the skull. The
algorithm was optimized but it kept the main idea of artificial
bee colony algorithm. It was initialized defining the number of
employee, onlooker and scout bees. The Cerebrospinal Fluid
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(CSF) intensity in the MRI scan was defined as the food source
intensity. Once the food is found, the memory of the employee
bee is saved. This process is carried out using the four main
orientations and the algorithm stops when all the employee
bees reach the CSF intensity.

Lakshmi [9] discussed the importance in preprocessing the
image before skull stripping. Their algorithm is based on
two steps: 1) Preprocessing, which removes noise (using the
Curvelet Transform), the artifact (often generated by hardware)
and the skull (using morphological operators), and 2) Segmen-
tation, which applied a spatial Fuzzy C-Means (clustering the
similar data). They evaluated by visually comparing the skull
stripping process.

Kleesiek [10] generated a 3D Deep Convolutional Neu-
ral Network to process MRI scans and perform the skull
stripping. They set an CNN architecture based on seven
sequential convolutional layers and one soft-max output layer.
The volumes were obtained through different datasets and
inserted into training set for pattern extraction processes. Their
method obtained the highest average specificity measure and
the highest average Dice score.

Shaswati [11] proposed the use of the rough-fuzzy connect-
edless algorithm to identify the brain based on 3D volumes
of T1-MR scans. The most challenging task is the definition
of the membership functions for the fuzzy algorithm, and the
affinity relation between them. In essence, this algorithm uses
the rough set theory to identify the brain. The comparison anal-
ysis showed that the performance of this algorithm surpassed
the results of well-defined skull stripping algorithms. Their
algorithm performed consistently well across the datasets
(simulated or real). As long as the other approaches performed
better in some datasets than in others.

To supplement our related work, the following tools are used
to compare our approach:

1) Brain Extraction Tool(BET) [12], as part of the FSL
package. This model starts by generating a spherical
mesh in the center of the brain, then inflated towards
the border of the brain. Some advantages of BET are:
its speed and being insensitive to parameters setting.
However, this tool might consider false-positives and
being slower when registering the brain.

2) The Brain Surface Extractor(BSE) [13] applies sequen-
tial steps to identify the surface: Firstly, an anisotropic
diffusing filtering and edge detection is performed, fol-
lowed by morphological operators to adjust the surface
to the brain. One disadvantage of BSE is its dependency
to parameter tuning.

3) 3D Skull Stripping, or 3DSkullStrip, is part of AFNI
package [14], and it is considered as a modified version
of BET where it applies the surface inflation procedure.
One advantage is the step where it removes eyes and
ventricles, in addition to other adjustments.

4) BridgeBurner(BB) is part of the FireVoxel tool [15],
where it finds a small cubic region in the white matter,
and then it computes the mean intensity in a window
to create a coarse segmentation, similar as AFNI. Once
detected the surface, it starts to shrink to the surface
to adjust to the brain edge. One disadvantage of this
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Fig. 2. Workflow of the brain extraction approach.

method is the chance to have non-brain tissue blobs
in some specific parts. This algorithm often leaves the
cerebrospinal fluid within the extracted brain.

5) GCUT is a graph cut-based approach to extract the
brain [16]. Firstly, it separates the gray matter and
cerebrospinal fluid by applying a threshold, which often
groups the brain, skull and meninges as a single com-
ponent. Graph cuts are applied to minimizes the ratio
between the edge cost and its volume. The last step is
applied to obtain the refined brain; however, its main
disadvantage is to detect the wrong edges, which may
imply in an undesired brain extraction;

6) a preliminary step within the Freesurfer software [17],
where it applies the Watershed Transform to estimate
the white matter, followed by adjustments using prob-
abilistic atlases to refine the surface and the GCUT to
refine the segment.

III. PROPOSED APPROACH

This section aims to present our approach to extract the
brain, which comprises the region inside the meninx. The
main challenge in directly extracting the brain is the fact that
it has shades of grey intensity, which differs among brain
regions, This is compounded by the realization that the brain
tissues, because its variation of T1-intensity according to water
particles, makes it difficult to use conventional techniques such
as thresholding. Therefore, the proposed workflow follows a
subtraction approach, whereby unwanted objects are removed
from the image step-by-step until what is left is the target
object (in this case the brain). The largest component is by
far the brain, so the process takes advantage of this fact by
extracting the largest component. All the remaining objects,
such as skull(dark intensity) and fat(bright intensity), are not
considered in this work. Once this key idea is identified, the
next challenge would be to figure out what are the tools
and techniques that most efficiently perform each step. Fig.
2 illustrates the proposed workflow, which is detailed in the
following subsections.

A. Image Acquisition

1) Acquire 3D Brain Image: The 3D images are obtained
using the free-access OASIS dataset [18], which provides
an image that is already preprocessed (image registration
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(a) (b) (c)

Fig. 3. Noise preview: (a) original image; (b) image enhanced for
noise visualization, (c) image enhanced for noise removed visualiza-
tion.

and alignment). The OASIS-1 dataset contains 3D-images
composed of 208x178x178 pixels. A simple batch file was
run to read all files from their repository.

2) Extract 2D Slices of Axial projection: In this step, we
extracted only the axial (i.e. horizontal plane) projections of
the brain. Out of the 178 axial slices we extracted only the
61 (from #70 up to #130) that are more related to the brain,
skull, and meninx, i.e. slices below #70 do not belong to
the cerebral tissue, and for the ones above #130, the cerebral
tissue is scarce. These slices correspond to the images that are
above the eyes and below the top.

B. Preprocessing

This section describes the steps for noise removal and
contrast enhancement.

1) Background Noise Removal: When the slices are ex-
tracted from the volume, brighter noise appears in the back-
ground, nearby the skull region, as illustrated in Figure 3(b).
The noise removal algorithm used is the one shown in Algo-
rithm 1. The first line computes the average of the gray-tones.
The second line applies a median filter using a 3x3 window.
In the third line, a mask is created to remove the noise (i.e.
leaving only the skull and its internal elements). The mask has
zeros where the image has to be removed and ones where it
should remain. In the fourth line, the mask is arithmetically
multiplied by the image, thus removing the noise. Fig. 3(c)
shows the image after the noise removal step.

Algorithm 1: Noise removal

1 Timage = mean(Image);
2 imageMedian = medianFilter(image, [3, 3]);
3 mask = imageMedian > Timage;
4 Image = mask ∗ Image;

2) Contrast Enhancement: This step is all performed using
concepts and operations of mathematical morphology. The
gray intensity is not normalized, i.e. it varies from image to
image thus requiring the adjustment of different contrasts in
different scans. Also, this steps aims to enhance the anatomical
structures, since the MRI scans are in low contrast. Contrast
enhancement is performed by Algorithm 2.

Once the image A is input from the previous step (Line
1), its complement B is calculated (Line 2), where L is the

Algorithm 2: Contrast enhancement

1 A = inputImage;
2 B = Ac = (L− 1)−A;
3 C = B • SE1;
4 D = Cc = (L− 1)− C;
5 Adiff = A−D;
6 Aenhanced = A+Adiff ;

(a) (b) (c)

Fig. 4. Contrast enhancement: (a) original image; (b) enhanced image,
(c) binarized image.

highest gray-tone available in the image A. A closing operation
(Line 3) is performed using a disk structuring element SE1 to
generate image C. After that, the complement D of image C
is calculated (Line 4), using the same procedure of the second
line. The difference between A and D is stored in a Adiff

(Line 5). Finally, this difference is added to the original image
A and set as the enhanced image (Line 6). In Fig. 4(b), it is
illustrated the contrast enhancement based on the algorithm
proposed by Benson [4].

C. Largest Connected Component Extraction

This step consists of image binarization, and detection and
extraction of the largest connected component. We explain
each one as follows.

1) Image Binarization: Image binarization (Fig. 4) is car-
ried out with the Otsu threshold algorithm, in order to facilitate
the detection of the brain components using morphological
operators.

2) Detection of the Largest Connected Component: The
brain is the largest connected component (LCC) in the middle
axial slices of a MRI scan. For these scans, the work of
Benson et. al. is known to be an adequate approach for brain
extraction. Their image set may be considered a near best-
case scenario, i.e. one single slice in the middle scan. We
remove this restriction by allowing several slices from multiple
axial areas, including the top ones (near worst-case scenario).
However, three limitations can be identified: 1) Connected
skull and brain: if brain and the skull emerge as single
connected component after the labeling of the binarization
process, their algorithm does not work. In Fig. 6(a) both brain
and skull have the same color, i.e. they are not separated;
2) Disconnected Brain: The brain does appear as a single
connected component, as can be seen in Fig. 6(b), i.e. the
green area in the middle indicates it is not a single component
as desired. 3) Single-middle axial slice: it was applied to
a single slice and it is quite specific for the middle axial
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slices, i.e. closer to the top, the skull becomes the LCC, thus
requiring an adaptation; Furthermore, some generalization is
desired in our approach since we are dealing with a relatively
larger number of slices (i.e. 61) that present brain variations in
size or structure and possible abnormalities (e.g. due to either
equipment defects or disease). Note: If a work is dealing with
one single slice, or even with neighbor slices, this steps could
be reduced or even removed.

The first sub-step defines the number of connected com-
ponents and where they are located. The assumption is that,
apart from the background, the brain is the largest connected
component in the middle axial slices. The workflow (Fig. 5)
addresses these three issues.

1) External skull-border identification: First, to find out
whether the brain and the skull are a single component,
we applied the following procedure: The border of
the component is identified by using the Canny edge
detector. The labels of the border (i.e. the skull) are

computed and then stored in a vector;
2) Removal of the lateral ventricles. The second step is

to store the most frequent label in the background(i.e.
avoiding remaining noise).

3) Thirdly, this step is responsible for computing the label
that most occurs in the center that is different of most
frequent label in the background, using a 25x25 window
positioned in the center of the image, and store this
into a vector that corresponds to the center. If this
vector is inside the vector of the labels, it means that
the brain is connected to the skull. So, we applied a
opening operation using a disk as structural element.
This validation is recursively applied until the brain
separates itself from the skull. Of course, the kernel of
the structural element increases at each iteration. This
way we can overcome the first challenge and separates
the brain from the skull. Fig. 6 illustrates the Largest
Component detection.

(a) (b)

Fig. 6. Largest component detection (images were recolored using
pseudo-colours for visualization purposes): (a) first process did not
recognize the brain and the skull separately; (b) image after the
opening operator application, separating brain from skull.

However, the brain may not be all connected, so we relabel
some connected components. We have a hypothesis that the
center of the image always corresponds to the brain, then, any
label in the center of the image must have the same value.
The same valCenter is used to relabel the image, every label
inside the 25x25 window in the center is labelled as the label
that most occurs in the center, except the background. For
further information, this step is illustrated in Fig. 7(a). Using
this, we overcame the second challenge.

3) Extract the Largest Connected Component: In order to
extract the largest connected component, we connected the
border in order to form an convex object. Using this, we avoid
to lose too much information of those parts in the external
brain that was not connected in the step of connection. Fig. 7
illustrates this step.

D. Implementation

Our approach was entirely implemented using the following
freely-available packages:

1) We used the Matlab r2018a to slice the volumes as input
in our approach;



836 IEEE LATIN AMERICA TRANSACTIONS, VOL. 20, NO. 5, MAY 2022

(a) (b)

Fig. 7. Steps from grouping into a single component and convex
object generation: (a) after the grouping component step; (b) convex
forming application.

2) Our preprocessing step used Python 2.7 Jupyter Note-
book. To avoid recoding, additional packages were in-
cluded, such as: Scikit-image, and Scipy;

3) The brain extraction was performed using Python 2.7;
4) The evaluation was performed both in Python 2.7 and

Matlab r2018a.

More information about our approach, including the OASIS
identification per subject, preprocessing and brain extraction
codes, slicing program, and result evaluation are available on
our GitHub repository [19].

E. Metrics

To evaluate this work, we adopted the following metrics:
1) Precision (P); 2) Recall (R), also known as Sensitivity; 3)
F-measure (F); 4) Specificity (S); 5) Accuracy (A).

These metrics are calculated based on the operators
false-positive(FP), false-negative(FN), true-positive(TP), true-
negative(TN). They are obtained using:

R =
TP

TP + FN
, S =

TN

FP + TN
, (1)

P =
TP

TP + FP
, F = 2× P ∗R

P +R
, (2)

A =
TP + TN

TP + TN + FP + FN
. (3)

Note that in brain extraction, a TP corresponds to a pixel
where it is labeled as representing the brain by both our
approach and the ground-truth; FN indicates the case where
the approach finds a non-brain(i.e. background) pixel whereas
the ground-truth found a brain pixel; A FP occurs when our
approach identifies a brain pixel, but it is in fact a non-brain
pixel set by the ground-truth. A TN is obtained whenever a
pixel is labeled as non-brain area by both our approach and
the ground-truth.

IV. CASE STUDY AND RESULTS

In this section we present our case studies to evaluate, using
several metrics, the approach for brain extraction.

A. First Case: Comparing our Brain Extraction Approach
with the Ground-Truth

In our first case, we calculated the efficiency of our approach
according to five evaluation metrics. We defined 61 axial slices
for each 3D projection (from slice # 70 to # 130). We used all
the OASIS-1 dataset, i.e. 430 samples. The threshold chosen
was provided by the OASIS-1 dataset (#100). Fig. 8 shows
the efficiency of the brain extraction process regarding Recall,
Precision, F-Measure, Accuracy, and Specificity. We reach this
efficiency by comparing the resulting image with the images
that were provided from the dataset. Fig. 9 illustrates the
correlation among the efficiency metrics.

Fig. 8. Brain-extraction efficiency per number of patients.

We first calculated the efficiency for each slice. Next, an
average efficiency from all slices was performed for each
patient. Finally, the overall efficiency was calculated for each
metric and using all the patients.

Specificity and Accuracy were the best evaluation metric
(> 90%), whereas Recall was (> 70%). However, it is
import to emphasize that the proposed algorithm is capable
of segmenting brain images regardless of their position in the
encephalon (Table I).

B. Second Case: Comparing our Approach with Relevant
Related Work

As our second experiment, our approach is compared with
relevant work in the literature. Table II presents the comparison

Fig. 9. Pearson’s correlation between the metrics.
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TABLE I
SUMMARY OF THE EVALUATION OF BRAIN EXTRACTION

GROUPED BY EFFICIENCY RANGES

Range Recall Precision F-Measure Specificity Accuracy
[0.7,0.8] 17 1 3 0 0
(0.8,0.9] 123 41 64 2 3
(0.9,1.0] 290 388 363 428 427

TABLE II
COMPARISON WITH THE LITERATURE ACCORDING TO

SPECIFICITY AND SENSITIVITY METRICS

Method Sensitivity(%) Specificity(%)
BET [12] 92.5 94.2
BSE [13] 97.1 64.9
3dSkullStrip [14] 90.6 96.2
BB [15] 80.6 98.8
GCUT [16] 95.2 92.9
Freesurfer [17] 94.8 94.0
Our approach 91.2 96.9

between our work and the literature. To avoid any bias regard-
ing dataset and imaging type, we followed certain criteria: 1)
the method needs to use OASIS dataset as input; 2) only T1-
weighted MR scans are considered; 3) same evaluation metrics
to compare.

Our approach ranked the 5th position regarding Sensitivity,
and it reached the 2nd position regarding Specificity. Fig. 10
illustrates the comparison according to the evaluation metrics.

V. SUMMARY AND CONCLUSION

There is currently available a significant number of open-
access medical image repositories, some of them may be
quite complex and multi-modal. With the improvement of data
acquisition and data mining techniques, these databases may
grow exponentially. However, if this growth is not paralleled
with the development of efficient DIP methods and the support
of automation tools that are capable of exploring these large
databases within feasible time, one may not take full advantage
of this wealth of information. A bottleneck is formed where
these images accumulate without being able to be explored
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by the medical community in their pursuit of the cure of
many diseases. Clearly, faster and more efficient algorithms
are desired that are capable of extracting and processing
information from these databases.

One advantage of this work is the increasing in research to
extract the brain to serve as a marker for diseases. Thus, it
may be beneficial to digitally extract the brain from images
of the encephalon to allow an easier and detailed examina-
tion (prognosis). In this work, we proposed an unsupervised
framework to extract the brain from axial slices of the brain
in T1-weighted MR images using digital-image processing
techniques. In essence, according to the proposed approach,
the brain was extracted by first applying some preprocessing
and then extracting the brain. Preprocessing adjusts the images
by removing background noise and enhancing contrast.

This framework employed DIP approaches in every step
performed. One limitation is that the MRI should be registered
and centralized in order to insert them in the process. However,
for datasets that are not registered/centralized, this can be
accomplished by adding a simple procedure that locates the
largest and smallest radius of the slice.

The proposed framework was adjusted for T1-Weighted
MR images; T2-Weighted, Proton-Density images or another
type of modality may not yield good results, thus requiring
additional adjustments in coding. The advantage of this work
are the use of one unsupervised process to interpret and
segment different slices and patients without changing the
coding. Additionally, this process may be applied to a single
slice, not requesting the entire volume to extract the brain (i.e.
saving computational effort).

Our results were assessed based on quantitative metrics
(Specificity, Recall, F-measure, Precision, and Accuracy).
Two experiments were performed: Our first experiment was
regarding the five metrics . Specificity and Precision were
superior to 90%, F-Measure and Accuracy surpassed 80%, and
Recall was better than 70%. In the second experiment, which
analyzed other work in the literature, our approach ranked
the 5th position regarding Sensitivity, and it ranked the 2nd
considering Specificity.

The purpose of this research was to provide a support
to medical examination. The process was performed for en-
tire dataset without changing parameters using the OASIS-
1 dataset. Future work should consider other planes such
as the sagittal (i.e. longitudinal plane) and the coronal (i.e.
frontal plane), which would require a different procedure and
approach.
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BET Brain Extraction Tool
BSE Brain Surface Extractor
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