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On-line Recognition of Emotions Via
Electroencephalography

K. A. A. Weiss, F. Concatto, R. G. C.Teive, and A. R. G. Ramirez

Abstract—Automated pattern recognition of brain signals can
bring about new experiences, enhancing applications in a wide
array of areas. One of its fields of study is the recognition
of emotions via electroencephalography (EEG), which shows
exclusive advantages compared to other methods. However, re-
search with brain-computer interfaces (BCI) is usually structured
in two sequential stages: data collection and data analysis.
These stages leave a gap in the perspective of a functional
system in a production environment since the practitioner needs
to wait a considerable length of time until they can see the
results of the current activity. An online classification system
of emotions (positive, neutral, and negative) was developed using
open resources in this work. Five machine learning models were
trained with the SEED IV dataset, which is labeled with different
emotions. The models were trained and tested using nested cross-
validation and grid search to obtain the best hyperparameters.
The algorithm implementation in Python was integrated with the
OpenBCI software to capture the EEG signals, process them, and
command the simulations. The best average accuracy obtained
for a single subject was 76.19%, and the average accuracy
for all subjects was 57.07%. The average execution time for
signal processing and prediction, combined, was around one
millisecond, which demonstrates the potential for applications
with real-time characteristics.

Index Terms—Emotion Recognition, Brain-Computer Inter-
face, Electroencephalography, Online Processing.

I. INTRODUCTION

The amount of research in applications of brain-computer
interfacing (BCI) is constantly growing. Although origi-

nally studied within a limited scope in the medical field, such
as sensory and motor rehabilitation, it has recently expanded to
other areas, such as entertainment and education. BCI systems
consist, in essence, of the acquisition and processing of elec-
trical signals from the brain’s neural activity, aiming to fulfill a
specific goal [1] by using invasive or non-invasive techniques.
Invasive approaches involve the insertion of electrodes directly
on the brain, thereby demanding surgical procedures that carry
a specific risk. Due to being in direct contact with the brain, the
device can acquire signals with much more precision – down
to a single neuron – but may cause skin scars [2]. On the other
hand, non-invasive methods are safer, but the obtained signals
are less specific, since they acquire the collective activation of
a group of neurons.

One of the new applications of BCI systems is the recog-
nition of emotions. The recognition of emotions is part of
the branch of affective computing, which aims to process,
recognize, and simulate the affective nature of human beings.
Emotions are a deep and complex phenomenon, and systems
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that can recognize them reliably and authentically have the
potential to be applied in a diverse range of situations. A
large portion of the proposed approaches for this task are
based on the analysis of images or sounds, which are subject
to deception and manipulation. Therefore, in this study, we
aim at using a BCI-based methodology, which enables the
monitoring of involuntary emotional reactions, acquiring them
directly from neural activity.

Most research on applications in BCI systems is based on
an analysis performed on data obtained manually or even data
processing in an offline manner. In this case, the processing
and data acquisition are not executed in a synchronized way.
Although this research strategy is necessary for data explo-
ration and the achievement of discoveries, it is also essential
to develop practical BCI systems that work online or in real-
time and present open source solutions.

To the best of our knowledge the number of works involving
practical BCI systems that work in real-time and present
open source solutions is scarce. For instance, Oldoni et al.
in [3] developed a BCI system to aid in the rehabilitation of
aphasia, but since the research results were analyzed offline,
professionals had to wait a considerable amount of time to
access the acquired results. Another example can be seen
in [4], where the authors developed a BCI system for the
assessment of users’ quality of experience when using an
application; in the study, the results are also processed offline,
slowing the process of improvement of the software. In this
context, this work aims to explore an implementation of a BCI
system in an online application involving emotion recognition.
Three labels were used to classify emotions: positive, neutral,
and negative emotions. The implementation described in this
work uses open source technologies to facilitate academic
reproduction and reuse and a publicly available dataset, called
SEED-IV [5].

This paper is structured as follows: Section II briefly dis-
cusses related works. In Section III, the emotion recognition
problem is contextualized. Section IV-A presents details of the
dataset used. Section IV-B gives the details of the system im-
plementation. It is also presenting the pre-processing, feature
calculation, and model training. Section IV-C describes the
development of the integration of the simulation system and
analysis of the system execution in real-time. In Section VI,
some results are reported, and in Section VI-B the limitations
of the system are discussed. Finally, in Section VII the
conclusions and perspectives for future work are presented.

II. RELATED WORKS

Considering the systematic review presented in [6], the
authors conclude that the emotion classification is generally
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either performed offline, or the adopted methodology is not
portable. These aspects, according to [6] pose serious limi-
tations to the possibility to transfer BCI-based affective state
recognition to real-life situations at the current stage. Thus, it
is important the development of online systems, which are able
to classify emotion in real-time classification. In this section
we explore some studies that are closely related to ours.

According to [7], emotions can be represented using dif-
ferent general models. The most used are the discrete model
and the dimensional models. The discrete model identifies
basic, innate and, universal emotions from which all other
emotions can derived. Some authors state that these primary
emotions are happiness, sadness, anger, surprise, disgust, and
fear. On the other side, dimensional models can express
complex emotions in a two-dimensional continuous space;
Valence-arousal (VA), or in three dimensions: Valence, arousal
and dominance (VAD). Valence is used to rate positive and
negative emotions and ranges from happy to unhappy. Arousal
measures emotions from calm to excited. Three-dimensional
models add a dominance axis to evaluate from submissive to
empowered emotions.

As presented in [7], most systems use the VA or VAD spaces
and classify each as a bi-class (for instance, valence positive
and negative; arousal low-value and high-value) or tri-class
problem (for example, valence positive, neutral and negative).
In relation to datasets, DEAP and SEED are publicly available
databases, and are the most frequently used.

Lan et al. in [8] used four Circumplex levels to represent
the types of emotions classified by the system. The DEAP
dataset was used, where fractal dimension was calculated and
used as features. An average accuracy of 49.40% was obtained
with a threshold of fractal values and max voting. Due to the
simplicity of the processing model used, the authors comment
on the feasibility of real-time execution.

Hou et al. in [9] classified positive and negative emotions.
From the statistical and fractal features, they obtained an
accuracy of 91.07% with an SVM classifier. They used a
dataset created by themselves. A simulation interface was
developed to validate the execution of the system, using a
rendered 3D avatar to display the simulated emotions.

Liu et al. in [10] classified positive and negative emotions
based on time-frequency features with LDA. An accuracy
of 86.63% was obtained with an SVM classifier using a
proprietary dataset. A prototype developed for the system
simulation allowed the recognition of emotions in real-time.
Graphs of valence levels were displayed during the simulation.

Iacoviello et al. [11] proposed an automatic real time clas-
sification method of EEG signals from self-induced emotions.
In this case, only two kind of emotions were classified: disgust
and relax. The signals were classified by a two stage algorithm:
the first one was an off-line stage, aiming at the training of a
suitable classifier whose input were the selected features; the
second stage was the application of the classifier to new data.
The specific considered signal required the use and adaptation
of mathematical tools like Wavelet Signal Decomposition
Theory, which was used in the first stage for calibration and
filtering, Principal Components Analysis, which was used to
select the features and Support Vector Machine.

In [12] the authors search for the recognition of happy, fear,
sad and relax emotion EEG signals, by using a two-stage
filtering method. At the first stage, a correlation-criterion is
suggested for removal of noisy intrinsic mode functions (IMF)
by applying the empirical mode decomposition on the raw
EEG signal. The noise-free IMFs are used to reconstructed the
denoised EEG signal with improved stationary characteristics.
The denoised EEG signal is further decomposed into modes
using the Variational Mode Decomposition (VMD). At the
second stage, the instantaneous-frequency based filtering of
VMD modes is performed and filtered modes are retained
for the reconstruction of denoised EEG signal with the de-
sired frequency range. After two-stage filtering, the non-linear
measures of filtered EEG signals are used as input features to
multi-class least squares support Vector Machine classifier, for
emotion recognition.

Zangeneh et al. [13] proposed a method to classify emotion
into four groups, considering the database DEAP. In this pro-
posal, the EEG phase space is reconstructed for each channel
and then transformed into a new state space called angle
space (AS). Nonlinear features are extracted from AS and fed
to classification step. Statistically significant and independent
features are fed into two classification models including MLP
and Naïves Bayes. Classifiers are combined through Dempster-
Shafer Theory and final decision is made.

Recently, a study involving the SEED dataset was carried
out by Hwang et al. [14], tackling the problem of subject-
independent classification. The authors used an adversarial
learning approach, where one neural network learns to classify
emotions independent of the subject and the other adversar-
ially attempts to confuse the first by making it incapable of
distinguishing between different subjects. By comparing their
approach with similar methodologies, the authors concluded
that it offered noticeably better results – their best model
achieved an accuracy of 75.3%, while a simpler model based
on support vector machines (SVM) achieved only 58.2%.

In a paper by Lew et al. [15], an experiment involving both
the DEAP dataset and SEED-IV was conducted, where the
researchers compared the model they developed, called RO-
DAN, with other competing approaches. They partitioned the
experiment into three categories: subject-dependent, subject-
independent and subject-biased. In all experiments, their pro-
posed approach offered either better or very similar results
when compared to similar techniques; furthermore, accuracies
were consistently higher in the SEED-IV dataset, achieving
values as high as 98.1% in the subject-biased experiment.

Another study that explored the SEED dataset was reported
by Zhong et al. [16], where the authors developed a deep learn-
ing approach based on the spatial characteristics of the EEG
signals. The model proposed by the authors (called RGNN),
by using a graph-oriented neural network, can capitalize on
both local and global relationships among different electrodes,
offering better inferential capacities. In comparison with other
state-of-the-art models, the authors identified that even though
the RGNN fell slightly behind on a band-based analysis in the
SEED dataset, it achieved better results than the alternatives
on both the SEED SEED-IV datasets when analyzing the full
spectrum.
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These recent studies demonstrate the scientific community’s
interest in developing statistical models capable of relating
electrical signals from an EEG to human-understandable emo-
tional states. Moreover, they show that the SEED-IV dataset,
which was selected for this work, is in widespread use by
researchers in the field, further justifying the choice of dataset.
There is a considerable focus on improving accuracy in these
studies, but not much attention is given to deployment aspects
such as the algorithm’s execution time.

III. PROBLEM STATEMENT

There are currently several approaches for automated emo-
tion recognition. In [17], facial expressions were recognized
to identify seven emotions: joy, sadness, anger, fear, disgust,
surprise and neutral. In [18], the recognition of emotions in
the valence and arousal axis of the Circumplex model were
performed via the classification of patterns found in speech.
Both studies present valid techniques for the recognition of
emotions but suffer from the limitation of possible simulation
or authenticity of the expressed emotion. For example, ap-
plications that require a smooth user experience and involve
usability tests can easily be compromised if the subjects in trial
do not respond with an authentic emotion, which effectively
counteracts the experiment [19]. In contrast, the recognition
of emotions by means of BCI devices does not suffer from
this limitation, since the signals are involuntary and cannot be
simulated by the user.

Most research on applications in BCI systems tends to be
restricted to manual results of data analysis or processing data
in an offline manner, that is, distantly in time from which the
data was collected. Although this research strategy is necessary
for data exploration and the achievement of discoveries, the
number of research papers on BCI systems for the roblem of
emotion recognition that work online (or in real-time), using
open source solutions, are scarce.

In this context, research on BCI systems carried out at
UNIVALI, and in partner institutions, highlighted the need
for an online response. Oldoni et al. in [3] developed a
BCI system to measure working memory, aiming to assist
professionals in the treatment of patients with aphasia. As
the results of the research were analyzed offline, there was
a latency for professionals to have access to the data and
act from the analysis of the acquired results. Ramirez et al.
in [4], developed a BCI system to assess user experience
when using software. As the results were processed offline, the
system took a long time to give feedback to the researchers,
hindering the dynamics of the experiments and, consequently,
generating a latency that prevented contributing in an agile
way in improving the usability of the software.

Therefore, in this work, we aim at answering the following
research question: is it possible to monitor the emotional
reactions of an individual in an online manner using a BCI
device?

IV. PROPOSED SOLUTION

In this section, we describe in detail our proposed solution
to the problems previously posed: a BCI-based system which

acquires electroencephalographic signals from an individual,
in a non invasive manner (thus avoiding surgical procedures),
while simultaneously classifying recently captured windows of
data into positive, negative and neutral emotional states. The
training and classification processes are applied to a dataset
available in the scientific literature, presented in the following
subsection. Then, we describe the methodology we used for
the generation of features, the construction of the statistical
models and the development of the software itself, using an
open source platform.

A. Analysis and Choice of Dataset

Three datasets were found for public use and for academic
purposes related to the context of recognizing emotions via
EEG signals, namely: DEAP [20], MAHNOB HCI [2] and
SEED IV [5]. All datasets feature different sessions and differ-
ent classes of emotion. In this work, the SEED IV dataset was
chosen, because it is more compatible with the objectives of
this research, which involves differentiating between positive,
negative and neutral emotions.

The DEAP dataset follows the PAD (Pleasure, Arousal,
Dominance) model of emotions [18], [21], and therefore we
considered it unsuitable for the goals of the present study. The
MAHNOB HCI dataset, on the other hand, classifies emotions
in nine different categories: sadness, joy, disgust, neutral,
amusement, anger, fear, surprise and anxiety [2], [17]. Since
the aim we established for this work had a more focused and
narrow point-of-view, we selected the SEED IV dataset, which
has four classes: happiness, sadness, fear and neutral [5]. We
discarded instances classified as fear, and considered happiness
as positive emotion and sadness as negative emotion, as they
are opposites [22].

The datasets, however, are not exclusive; it is possible to
also use other two datasets for the purpose of this study , but
since they use a different representation of emotion, additional
transformations would be required. This approach could be
explored in a future work.

The SEED IV dataset features 1080 trials with 15 par-
ticipants and an average duration of 2 minutes each. In
each trial, signals from 62 electrodes positioned according to
the 10-20 system were recorded, while participants watched
emotionally-inducing film clips [5]. Additional details about
the dataset, as well as a link to download it, can be found
here: http://bcmi.sjtu.edu.cn/~seed/seed-iv.html.

B. Feature Generation and Models

As the designed system needs to work online, the prediction
must be carried out as new signals arrive. This prediction
model implies defining parameters for a sliding window, such
as size and overlap. The sliding window runs through the
entire dataset, in which the features are calculated, as shown
in Figure 1.

The window parameters widely vary in related research and
there is no definite consensus on which parameters sizes to use.
Thus, preliminary tests were performed with a smaller partition
of the dataset, with different window parameters. The results
are shown in Table I.
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Fig. 1. Sliding window to calculate the features for prediction. Source:
adapted from [23].

TABLE I
PRELIMINARY TESTS WITH VARYING WINDOW SIZES AND

OVERLAP.

Size (s) Overlap (s) Accuracy
1 0 46.67%
1 0.5 47.28%
2 0 47.67%
2 1 47.53%
4 0 45.12%
4 2 47.91%

As the preliminary results demonstrate, no significant dis-
tinction could be observed between the different parameters.
However, the ones that showed the best results were used: a
window size of 4 seconds with 2 seconds of overlap.

The incoming signals were discretized in five bands, fol-
lowing the usual nomenclature of the brain signal processing
literature. Table II shows the upper and lower bounds of each
band.

TABLE II
BAND NAMES AND RESPECTIVE LOWER AND UPPER

BOUNDS.

Band name Lower bound Upper bound
Delta 1 Hz 4 Hz
Theta 4 Hz 8 Hz
Alpha 8 Hz 12 Hz
Beta 12 Hz 30 Hz

Gamma 30 Hz 50 Hz

For each frequency band of EEG signals, the spectral
density was calculated using an FFT; the densities were then
used as input features to train the machine learning models.
According to the experiments carried out by the authors of
the SEED IV dataset, Zheng et al. [5], the configuration with
only 6 electrodes was used – FT7, FT8, T7, T8, TP7, and
TP8. The authors positioned the electrodes in opposite areas
of the brain and located them near regions that are responsible
for processing emotions. This configuration presented results
equivalent to the configuration of 62 electrodes [5]. Thus,
a total of 30 features are generated per window instance,
originating from the signals of 6 electrodes and features of
5 frequency bands.

Before starting the feature generation process, we applied
a 1-50Hz bandpass filter to remove artifacts of unwanted

frequencies, using Scipy’s filtfilt() function, which applies the
filter forwards and backwards. Then, before computing the
FFT, we applied a Hann window of the same size as the FFT
window (4 seconds) to minimize spectral leakage effects.

With regards to the machine learning models utilized in the
prediction of emotions, we selected five well-known classi-
fiers for our experiments. Table III specifies the models and
hyperparameters used to implement the system in this work.

TABLE III
MODELS AND HYPERPARAMETERS.

Model Hyperparameters

Neural Network (MLP) # of layers and neurons, alpha
Random Forest (RF) # of estimators
SVM Kernel, gamma, C
LDA –
Logistic Regression (LR) C

C. Software Development

The OpenBCI platform [24] simulated the acquisition of
EEG signals. It provides several tools integrated within the
acquisition boards developed by the OpenBCI. Since the
OpenBCI was developed on the processing platform, it uses
Java programming language to create custom graphical inter-
faces, including custom widgets. In this work, we developed a
custom widget to display the current emotion being predicted
by the system.

The prototyping and development environment of the pre-
diction system was carried out in Python. Therefore, it was
necessary to develop a communication layer between the
two execution contexts. In this work, we established a TCP
connection between the OpenBCI widget and the Python envi-
ronment, following a client-server model. The OpenBCI acts
as a client, which forwards the EEG data to a Python server,
which is constantly waiting for new data. The Python server
responds with the classification results. Figure 2 illustrated the
exchange of messages between the two contexts.

Fig. 2. Communication protocol between the two execution contexts.

Before running the simulation, the EEG data from a trial
are transformed into a format accepted by OpenBCI. Then,
the data file is selected and imported into the OpenBCI to
start the simulation, as depicted in Figure 3.

Figure 4 displays the simulation of an ongoing trial. The
emotions widget is displayed in the lower right quadrant,
which shows a negative emotion, in this case.

V. EXPERIMENT SETUP

As we described in Section IV-B, the calculated charac-
teristics have an associated time dependency; therefore, it is
impossible to shuffle all the data in the dataset, as is usually
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Fig. 3. Simulation setup.

Fig. 4. Simulation in progress.

done before training machine learning models. This restriction
exists because the trained model must be tested in trials never
seen before, and the shuffling of the dataset will mix samples
from different trials causing a data leak between the training
and test datasets. Therefore, shuffling the dataset needs to
be performed at the trial level and not at the sample level.
The 5-fold cross-validation was used to alleviate over-fitting
problems when training the models.

A grid search was used to determine the best model hy-
perparameter combinations. A second 5-fold cross-validation
layer is performed during the grid search execution to avoid
over-fitting issues when finding the best hyperparameters. This
training strategy is called nested cross validation and was
applied to all trained models.

The implementation of the classifier system was performed
in the Python language, using the Scikit-Learn library. The pre-
processing of the six data channels was carried out with the
libraries of Scipy and Numpy. The implementation takes ad-
vantage of the vectorized operations available in the libraries,
to efficiently process multiple data channels.

VI. RESULTS

This section reports the results obtained in our work,
describing the accuracies achieved for each model and their
computational performance, closing with a discussion about
the limitations of the proposed platform.

A. Accuracies on the SEED Dataset

Table IV presents the average accuracy of the models used
for the different sessions for each subject of the SEED-IV
dataset. Training was done in a subject-dependent manner; that
is, for each individual, a different model was trained. To do
this analysis, each chunk of electroencephalographic data was
processed according to the description in Section IV-B: first
partitioning into bands, then filtering and then extracting the
spectral features using an FFT. The models are trained using
these features as inputs, with the expected outputs (happiness,
sadness, neutral) coming from the SEED-IV dataset. Accuracy
is measured by comparing the output of the trained model with
the actual emotion. Details about the participants are available
in a paper by Zheng et al. (2019), which describes how the
dataset was constructed [5].

TABLE IV
AVERAGE ACCURACIES OF THE MODELS FOR EACH

SUBJECT.

Subject MLP RF SVM LDA LR
1 39.19 44.41 41.31 40.03 40.49
2 60.62 65.92 63.78 64.36 62.83
3 42.24 44.6 44.9 46.22 43.47
4 61.31 67.28 64.49 59.56 61.42
5 50.02 56.09 50.85 52.86 50.41
6 66.18 68.92 67.56 64.58 67.97
7 54.74 61.71 60.84 58.53 59.93
8 60.01 62.07 61.66 60.31 62.39
9 53.66 52.82 52.56 55.17 45.17
10 52.97 56.93 52.88 52.22 54.39
11 43.4 45.09 49.8 49.71 48.2
12 42.33 46.5 44.29 42.11 41.32
13 49.17 52.16 54.03 54.97 52.03
14 52.44 55.69 53.95 52.68 54.55
15 71.23 75.93 76.18 73.67 76.19

Avg. 53.3 57.07 55.94 55.13 54.72

Analyzing the results of Table IV it is possible to verify that
there is no significant variability across the different models
tested. For example, accuracy for subject 3 shows similar
results across the different models. In contrast, the accuracy
among participants varies widely. For example, the models
have an accuracy of around 40% for subject 1, and around
75% for subject 15. Therefore, the models show a correlation
that is highly subject-dependent.

The execution time of the processes of filtering, feature
extraction and prediction (using an SVM model), was, on
average, close to 1 millisecond for each 4-second window
of data. This was measured with Python’s time.perf_counter()
function. It shows the capacity for developing BCI applications
in real-time. The results were obtained with an Intel Core i5-
7400 @ 3.00 GHz processor.

B. Limitations

One of the challenges of processing EEG signals is the
precise removal of artifacts. EEG signals are subject to several
and different types of artifacts that arise from internal physio-
logical occurrences and external sources. Despite the existence
of several algorithms detecting and removing artifacts, most of
them are not suitable for an online application, since they have
unsupervised nature or high processing complexity [25]. In this
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work, we did not implement an artifact removal algorithm due
to time restrictions. We applied a bandpass filter to remove
unnecessary frequencies, but there are still unwanted artifacts
in the frequencies used. The artifacts and their removal will
be addressed in future works, thereby further improving the
results reported here.

The spectrograms of two subjects with different perfor-
mance results from the trained models were compared to
illustrate this issue. Figure 5 shows the spectrogram of a trial
from subject 1, with visible artifacts delimited by rectangles
in red.

Fig. 5. Normalized spectrogram of the FT7 electrode with spectral
density in dB of subject 1. In this trial, a negative emotion is
stimulated.

The artifacts have the characteristic shape of the frequency
domain transformation of the Dirac Delta function, which
represents an impulse in the time domain. The artifact was
probably due to a sudden reaction from the subject. The effect
of this type of artifact produces outliers in the dataset, which
can negatively affect the performance of trained models. As
shown in Table IV, subject 1 exhibits low performance in all
models.

In contrast, the trial with subject 15 (who presented the
best performance among all subjects, according to Table IV),
shown in Figure 6, does not show the discussed artifact illus-
trated in Figure 5. However, it contains non-easily perceptible
artifacts that cannot be detected from the spectrogram.

VII. CONCLUSIONS

In this work, open-source technologies were explored to
develop an online BCI system to recognize emotions. The
OpenBCI platform was used to develop the application via
simulation, and five machine learning models were used to
search for the best classification results.

The SEED-IV dataset was used to train the models using a
spectral density. The best average accuracy obtained for a sub-
ject was 76.19%, and the average accuracy among all subjects
was 57.07%. The variation observed among the classification
results indicates that they are highly subject-dependent. The
implemented system is modular, allowing its use in other BCI
projects and not only for emotion recognition. In addition,
a preliminary analysis of the system’s processing time was

Fig. 6. Normalized spectrogram of the FT7 electrode with spectral
density in dB of subject 15.

performed, demonstrating the potential use in applications with
real-time processing restrictions.

As the data used in our experiments came from either
the simulations with the OpenBCI platform or the SEED-IV
dataset, we did not submit our study to be reviewed by an
ethics commitee. This will be a necessary step, however, when
planning the deployment of the products of this research in an
environment where data will be collected from real individuals.

The scripts and algorithms developed in this work have been
made available in a repository at GitHub, accessible with the
following link: [redacted]. The repository also includes all the
results obtained during training and testing procedures of the
models, including the best hyperparameters found using a grid
search. We hope the publicization of these resources aids in
replicating and validating the experiments described in this
work.

Future work may investigate the usage of two classes –
positive and negative – instead of three, reducing the prob-
lem to binary classification. Other studies may also address
the emotion recognition or other BCI applications using the
algorithms provided by this project, which will allow a faster
iteration on the development cycle of new studies. Another
future work that we consider important is investigating the
viability of subject-independent learning for our platform,
which would improve its application in practical contexts,
avoiding the necessity to train a new model for each different
user.
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