Heuristics Applied to Minimization of the Maximum-Diameter Clustering Problem

José André de Moura Brito, Augusto Cesar Fadel, Gustavo Silva Semaan, Flávio Marcelo Tavares Montenegro

Abstract— This paper introduces two heuristic algorithms for the Maximum-Diameter Clustering Problem (MDCP), based on the Biased Random-Key Genetic Algorithm (BRKGA) and the Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristics. This problem consists of finding k clusters that minimize the largest within-cluster distance (diameter) among all clusters. The MDCP is classified as NP-hard and presents increased difficulty when attempting to determine the optimal solution for any instance. The results obtained in the experiments using 50 well-known instances indicate a good performance of proposed heuristics, that outperformed both three algorithms and an integer programming model from the literature.

Index Terms—Clustering, Diameter, Metaheuristics, Integer Programming

I. Introdução

Atualmente existe um vasto conjunto de aplicações reais que podem ser abordadas utilizando a análise de agrupamentos [1]. Tais aplicações estão associadas aos mais diversos domínios, tais como: Biologia, Engenharias, Estatística, Medicina, Computação, entre outros. Em linhas gerais, a análise de agrupamentos é uma técnica de análise multivariada que incorpora um conjunto de algoritmos, os quais têm, por finalidade, a construção de k grupos (clusters) a partir de uma base de dados constituída por n objetos (registros) com q variáveis. De forma a efetuar a alocação dos objetos aos grupos e avaliar a sua homogeneidade, utiliza-se uma função objetivo baseada em uma métrica, ou seja, uma medida de distância.

Face às variadas aplicações desta técnica e à complexidade envolvida na resolução dessas aplicações, quanto à obtenção de soluções de boa qualidade, encontram-se na literatura diversos algoritmos, classificados, basicamente, como não hierárquicos e hierárquicos [1]. A escolha da métrica e a definição da função objetivo impactam, diretamente, a alocação dos objetos aos grupos.

J.A.M. Brito, Escola Nacional de Ciências Estatísticas, Rio de Janeiro, RJ, Brasil (e-mail: jambrito@gmail.com).

A. Fadel, Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, RJ, Brasil (e-mail: augustofadel@gmail.com)

G.S. Semaan, Instituto do Noroeste Fluminense de Educação Superior da Universidade Federal Fluminense, Santo Antônio de Pádua, RJ, Brasil (e-mail: gustavosemaan@id.uff.br).

F.M.T. Montenegro, Escola Nacional de Ciências Estatísticas, Rio de Janeiro, RJ, Brasil (e-mail: fmtmontenegro@gmail.com).

Além disso, ao definir a função objetivo, fica definido, consequentemente, o problema de agrupamento que será abordado. Neste sentido, em [2-5] são apresentados exemplos de funções objetivo e de formulações matemáticas adotadas em alguns desses problemas. Entretanto, independentemente da métrica e da função consideradas, problemas de agrupamento são, em geral, de difícil solução computacional, conforme [3], [4-9] e [10], sendo classificados como problemas NP-difíceis. Isso implica, por sua vez, que à medida que o número de objetos a serem agrupados aumenta, mais dificil torna-se a obtenção da solução ótima global para esses problemas, seja através da aplicação de métodos exatos ou mesmo heurísticas. Neste trabalho, foi considerada, em particular, a função objetivo associada ao diâmetro, caracterizando o problema de agrupamento com diâmetro mínimo, doravante denotado por PADM. Uma revisão sistemática da literatura mostra que há poucos trabalhos que trazem a proposta de algoritmos para a resolução deste problema, sendo a maioria baseada na aplicação de procedimentos simples e que produzem, no máximo, soluções correspondentes a ótimos locais de baixa qualidade. Ainda neste sentido, até o presente momento, o algoritmo relativamente mais eficaz encontrado para o PADM foi o algoritmo GRASP proposto em [11].

Os novos algoritmos propostos neste trabalho têm como diferenciais: (i) o uso de procedimentos de construção, cruzamento e busca local que garantem a produção de ótimos de melhor qualidade (muitas vezes ótimos globais, às custas de baixo tempo computacional), quando comparados às soluções produzidas pelos demais algoritmos da literatura, em particular, o algoritmo proposto em [11] que, até o presente momento, relatava os melhores resultados; (ii) a robustez e estabilidade do algoritmo baseado no BRKGA, comprovadas por experimentos computacionais da seção IV e (iii) a proposta de um novo algoritmo que teve por base uma metaheurística nunca aplicada ao PADM. A seguir, fazemos um breve relato dos trabalhos chave encontrados durante o processo de revisão.

O trabalho de [2] apresenta uma formulação de programação inteira para o problema. Além da formulação, o autor propôs um algoritmo heurístico que produz o ótimo global quando o número de grupos *k* é igual 2. Ainda neste sentido, foi provado, em [12], que este problema é NP-difícil quando k≥3. Em [13], foi proposto um algoritmo *branch and bound* específico para o problema. Todavia, conforme relatado em [11], tal algoritmo não apresenta uma boa

performance para problemas com número de objetos a partir da ordem de centenas.

Em [14], os autores propuseram um limitante superior para o PADM a partir do estudo do algoritmo hierárquico clássico de ligação completa. Em [15], os autores adotaram o algoritmo hierárquico clássico de ligação completa para resolver o PADM em aplicações reais, mais especificamente relacionadas à psicologia, e propuseram uma metodologia para definir o número de grupos k com base na convergência das soluções obtidas, a fim de produzir soluções finais mais robustas. Em [16], é apresentado um framework geral para a resolução do PADM em que consideram duas questões. Na primeira, subconjuntos de objetos são utilizados para obter *lower bounds* para a busca de soluções ótimas do problema original, enquanto a segunda apoia-se na existência de um subconjunto de objetos da instância que possui o mesmo valor no diâmetro que o do problema original.

Em função da complexidade desse problema, e objetivando produzir soluções de boa qualidade, às expensas de baixo custo computacional, são apresentados, neste artigo, dois algoritmos heurísticos, baseados, respectivamente, nos conceitos das metaheurísticas GRASP [17][18] (Greedy Randomized Adaptive Search Procedure) e BRKGA (Biased Random-Key Genetic Algorithm) [19].

Além da introdução, este artigo está dividido em mais quatro seções. A seção dois traz uma descrição do PADM, sendo apresentada, inclusive, a formulação que foi proposta em [2] para esse problema. Complementando a seção, apresenta-se uma breve descrição dos três algoritmos da literatura considerados neste trabalho para fins de comparação com as duas heurísticas propostas, quais sejam: o algoritmo GRASP proposto por [11], o algoritmo clássico de Ligação Completa (do inglês, *Complete Linkage*) [1] e o algoritmo FPF (*Furthest Point First*) apresentado em [20]. Doravante, para fins de referência neste artigo, esses três algoritmos serão denominados, respectivamente, por: GRASPDM2, CL e FPF.

A seção três apresenta as metaheurísticas GRASP e BRKGA, seguidas da descrição dos dois algoritmos heurísticos propostos, denominados, respectivamente, GRASPDM1 e BRKGADM. Na seção quatro, apresentadas algumas informações sobre as instâncias utilizadas, os resultados obtidos e análises realizadas a partir dos experimentos computacionais, considerando a aplicação dos cinco algoritmos e da formulação apresentada na seção dois. Analisando os resultados dos experimentos realizados, observou-se que os algoritmos propostos têm desempenho superior aos demais algoritmos da literatura, quanto à qualidade e à quantidade das soluções produzidas. Finalizando, a seção cinco traz as conclusões.

II. DESCRIÇÃO DO PROBLEMA

No PADM, fornecidos um conjunto X formado por n objetos $X=\{x_1,x_2,...,x_i,...,x_n\}$, com q variáveis (quantitativas e/ou qualitativas), tal que $x_i=(x_{i1},x_{i2},...,x_{iq})$, e uma matriz $D=[d_{ij}]_{nxn}$ que contém as distâncias entre todos os objetos x_i e x_j de X, tomados dois a dois, e definido o número de grupos

igual k, deve-se alocar os n objetos aos k grupos, denotados por $G_1,...,G_h,...,G_k$, de forma a minimizar o diâmetro em relação aos grupos.

Mais especificamente, determina-se, para cada grupo G_h (h=1,...,k), a maior distância d_{ij} (entre dois objetos x_i e x_j mais afastados dentro do grupo), o que corresponde ao diâmetro do grupo G_h , denotado por:

$$z_h = \max_{\forall x_i, x_j \in G_h} d_{ij} \quad (h = 1, \dots, k)$$
 (1)

Em seguida, calcula-se o máximo de z_h (h=1,...,k) obtendo-se Z, que corresponde ao maior diâmetro dentre os k grupos. Assim sendo, no PADM busca-se minimizar Z tal que

$$Z = \max_{h=1,\dots,k} z_h = \max_{h=1,\dots,k} (\max_{\forall i < j \in G_h} d_{ij})$$
 (2)

Adicionalmente à minimização de Z, assim como em outros problemas clássicos de agrupamento, devem ser cumpridas as restrições clássicas (3-5), sejam elas:

$$G_1 \cup G_2 \cup \dots \cup G_k = X$$
 (3)

$$G_l \cap G_s = \emptyset (l < s, l, s = 1, ..., k) \tag{4}$$

$$|G_l| \ge l \ (l=1,...,k) \tag{5}$$

A restrição (3) garante que união dos grupos produz o conjunto de dados original X (nenhum objeto deixa de ser alocado aos grupos). A restrição (4) garante que, cada objeto $x_i \in X$ (i=1,...,n) será alocado, exatamente, a um grupo e a restrição (5) garante que cada grupo terá, pelo menos, um objeto alocado. A Fig. 1 traz exemplo de duas soluções para o PADM, considerando o número de objetos igual sete (n=7) e o de grupos igual a dois (k=2). Em cada solução, a linha tracejada corresponde ao valor de Z. Assim sendo, a **Solução** 2 é melhor do que a **Solução** 1.

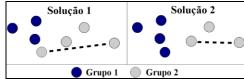


Fig. 1. Exemplo de Duas Soluções para o PADM

Em [2], são apresentadas várias formulações para problemas de agrupamento, em particular, uma formulação para o PADM. Nesta formulação, os parâmetros de entrada são o número de objetos (n), o número de grupos (k) e a matriz $D=[dij]_{n\times n}$ que contém as distâncias entre os n objetos tomados dois a dois.

Além disso, define-se x_{ih} (i=1,...,n; h=1,...,k) como a variável de decisão binária que assume valor 1 se o objeto i é alocado ao grupo G_h ; e 0 caso contrário.

$$Minimizar Z (6)$$

Sujeito a

$$d_{ij} x_{ih} + d_{ij} x_{jh} - Z \le d_{ij}$$
 $i=1,...,n-1; j=i+1,...,n; h=1,...,k$ (7)

$$x_{i1} + \dots + x_{ih} + \dots + x_{ik} = 1$$
 $i = 1, \dots, n$ (8)

$$x_{ih} \in \{0,1\}; Z \ge 0 \quad i=1,...,n; h=1,...,k$$
 (9)

A função objetivo minimizada em (6) corresponde ao maior diâmetro. A restrição (7) garante que os diâmetros dos grupos são menores ou iguais ao maior diâmetro Z. A restrição (8) garante que cada objeto i deve ser alocado a exatamente um dos grupos G_h (h=1,...,k). A restrição (9) indica a

integralidade das variáveis x_{ih} e reforça que Z assume valores não negativos.

Esta formulação tem o número de variáveis igual a (n.k+1) e o número de restrições igual a $k.(n^2-n)+n+1$, ou seja, pode ter um número substancial de variáveis e restrições à medida que n aumenta. Assim sendo, pensando no ótimo global, conforme comentado em [2], a aplicação de tal formulação para este problema é factível, apenas, para valores pequenos de n (ordem de dezenas).

Em [2], o autor também propôs uma heurística que produz o ótimo global quando k=2. Basicamente, em cada passo, essa heurística tenta alocar os dois objetos mais distantes a grupos distintos. A partir dessa heurística, em [11] os autores propuseram um algoritmo GRASP que constrói uma solução inicial a partir do conjunto X, aplicando, recursivamente, a heurística proposta em [2], de forma a produzir k grupos, sendo k = 2.k. No primeiro passo, a heurística é aplicada dividindo os n objetos da base de dados em dois grupos. Nos passos seguintes, a heurística é aplicada no grupo com maior diâmetro, e assim sucessivamente, até que sejam produzidos k grupos.

Em seguida, a partir da solução composta pelos k' grupos, são aplicados, nesta ordem, procedimentos de construção e de busca local, de forma a produzir os k grupos finais. Em linhas gerais, o procedimento de construção efetua a união de alguns dos k' grupos até produzir k grupos. O critério de junção leva em conta o acréscimo mínimo nos diâmetros dos k grupos, e na busca local são efetuadas diversas realocações dos objetos entre os k grupos (obtidos na fase de construção), de forma a reduzir o diâmetro máximo.

O algoritmo de Ligação Completa [1] (Complete Linkage) ou algoritmo do diâmetro, pertence à classe dos métodos hierárquicos aglomerativos. Tem esta denominação, porque todos os objetos, em cada grupo, são conectados uns com os outros tendo por base a distância máxima. Desta forma, a distância interna do grupo se iguala ao diâmetro máximo. No passo inicial deste algoritmo, cada objeto corresponde a um grupo, sendo efetuadas, em cada passo, junções entre os objetos ou entre um objeto e grupos (definidos em passos anteriores) já formados, em função da distância máxima, definindo novos grupos. A solução deste tipo de algoritmo pode ser representada graficamente por um dendograma [1]. Em [20] os autores apresentam o algoritmo denominado FPF (Furthest Point First) que trabalha, selecionando do conjunto X, em cada iteração, um objeto denominado "cabeça" (centroide do grupo), que define um novo grupo. O algoritmo FPF (Algoritmo 1) tem duas etapas: Na etapa de inicialização, o algoritmo seleciona aleatoriamente de X um objeto x_i , sendo tal objeto definido como cabeça do grupo 1. Ainda nesta etapa, todos os (n-I) objetos restantes são inicialmente alocados ao grupo 1. Na segunda etapa, durante (k-I) iterações, são definidos os demais cabeças (centroides) dos grupos 2,...,k e realizadas realocações dos objetos ao grupo mais próximo, considerando a distância entre o objeto e o cabeça do grupo.

Algoritmo 1 – Algoritmo FPF

Etapa de Inicialização (conjunto X)

- 1: Selecione $x_i \in X$ aleatoriamente e defina x_i como cabeça de G_1
- 2: Adicione x_i a C (Conjunto com objetos cabeça, centroides)
- 3: Aloque todos os objetos (X\C) a G_1

Etapa de Alocação

- 4: Para j←2 até k Faça
- 5: Selecione de $X \mid C$ o objeto x_s mais afastado dos cabeças de C
- 6: Adicione x_s em C
- 7: Defina x_s como cabeça de G_i
- 8: Aloque a G_j cada objeto x_i que esteja mais próximo do objeto cabeça de G_i do que o cabeça do seu grupo atual
- 9: Fim-Para

III. METODOLOGIA DE RESOLUÇÃO

Esta seção traz uma breve descrição das metaheurísticas BRKGA e GRASP e dos algoritmos implementados para o PADM, a partir do estudo dessas metaheurísticas.

A. Metaheurística BRKGA

Na metaheurística BRKGA [19][21] cada solução que compõe a população (cromossomos) é representada por um vetor *u* (vetor de chaves aleatórias) com *n* valores reais, gerados segundo uma distribuição uniforme [0,1].

A população utilizada em todas gerações de um algoritmo BRKGA é constituída por um conjunto de *p* vetores de chaves aleatórias. Além disso, em cada geração do BRKGA aplicase, em cada um desses vetores, um procedimento denominado decodificador (específico para o problema), que transforma cada vetor *u* em uma solução viável *s* para o problema de otimização para o qual a função objetivo deve ser computada.

Após a aplicação do decodificador e o cálculo da função objetivo considerando as p soluções viáveis, a população é particionada em dois conjuntos, a saber: um pequeno conjunto formado por p_e soluções elite, correspondentes às melhores soluções segundo o valor da função objetivo, e um conjunto formado por $(p-p_e)$ soluções não-elite, sendo $p_e < p-p_e$.

Para a atualização da população entre duas gerações seguidas utiliza-se uma estratégia de elitismo, ou seja, todos os p_e cromossomos do conjunto elite em uma geração g são copiados para a população da geração g+I, produzindo soluções viáveis cada vez melhores durante as m gerações. Os $(p-p_e)$ cromossomos que complementam a população da geração seguinte são produzidos aplicando-se procedimentos de mutação e cruzamento. Em cada geração a população é composta por: p_e cromossomos associados ao conjunto elite (geração g), p_m cromossomos mutantes e por $(p-p_e-p_m)$ cromossomos filhos, que são produzidos mediante aplicação do cruzamento uniforme [22]. Os critérios de parada são: (i) número máximo de gerações, (ii) tempo máximo de execução

ou (iii) número máximo de gerações sem melhoria no valor da função objetivo.

B. Metaheurística GRASP

A metaheurística GRASP [17][18] corresponde a um método iterativo que combina procedimentos de construção e busca local. Em linhas gerais, durante t iterações, aplica-se o procedimento de construção, seguido do procedimento de busca local. O objetivo da construção é produzir soluções viáveis s_o , que podem ser melhoradas mediante a aplicação do procedimento de busca local, produzindo soluções s^* tais que $f(s^*) < f(s_o)$ (considerando a função objetivo f(.) de um problema de minimização). Ainda neste sentido, a melhor solução s^* produzida após as t iterações do GRASP será a solução adotada para o problema de otimização em questão.

C. Algoritmo BRKGA para o PADM

Considerando o algoritmo proposto para o PADM (BRKGADM), a partir do estudo do BRKGA, cada cromossomo foi definido como um vetor u com n posições (n° de objetos do problema) preenchidas com valores gerados segundo uma distribuição uniforme [0,1], sendo cada posição de u (índice) correspondente ao índice do objeto x_i .

O decodificador implementado atribui a um vetor w, os n valores de u ordenados crescentemente. Em um passo posterior, os valores de w são pesquisados em u, retornandose as posições que esses valores ocupam em u a um terceiro vetor y. As k primeiras posições de y contêm índices associados aos objetos que serão utilizados para a formação dos k grupos iniciais $(G_1, G_2,..., G_k)$, ou seja, o índice na 1^a posição de y (objeto ao qual foi atribuído o menor valor de u) será alocado ao grupo G_1 , e assim sucessivamente, com a alocação do objeto na k-ésima posição de y ao grupo G_k .

Os demais objetos, cujos índices estão entre as posições (k+1) e n de y, são alocados, cada um, ao grupo G_h (h=1,...,k) onde ocorrer o menor incremento do diâmetro. Mais especificamente, para cada objeto x_i (i=k+1,...,n) de y, determina-se, a partir da matriz D (contendo as distâncias entre todos os objetos de X tomadas dois a dois), a sua maior distância $(d_{max} x_{ih} \ h=1,...,k)$ em relação aos demais objetos já alocados a cada um dos grupos. Em seguida, aloca-se o objeto x_i ao grupo h^* tal que h^* = $argmin_h$ $(d_{max} x_{ih})$.

A Fig.2 ilustra a definição dos grupos iniciais, considerando n=8, k=2 e um vetor u hipotético. Após a aplicação desse procedimento, considerando os vetores u e w a seguir, os dois grupos iniciais são definidos pelos objetos associados às duas primeiras posições de y, ou seja: $G_1=\{7\}$ e $G_2=\{3\}$.

A Fig. 3 ilustra (de cima para baixo e da esquerda para direita) a etapa de alocação dos (n-k) objetos aos k grupos inicialmente definidos. Novamente considerando n=8 e k=2, os quadrados em cinza indicam os objetos que ainda não foram alocados a nenhum grupo, os quadrados em preto e branco indicam os objetos já alocados aos grupos 1 e 2, respectivamente, o quadrado hachurado corresponde ao próximo objeto x_i (de acordo com ordem da decodificação de y) que será alocado a um dos grupos e as setas tracejadas

indicam, para G_h , qual a maior distância de x_i ao grupo. O segmento de reta cinza corresponde ao diâmetro máximo Z. No caso do PADM, o cruzamento possibilita a troca dos k primeiros objetos que definirão, inicialmente, os grupos, além de alterar a ordem de alocação dos (n-k) objetos aos grupos $G_1, G_2,..., G_k$

Indices	(número	dos ob	ietos)	١
marcos	ilullicio	403 00	TC LOS	,

Vetor	1	2	3	4	5	6	7	8
и	0.34	0.71	0.12	0.28	0.83	0.69	0.02	0.54
w	0.02	0.12	0.28	0.34	0.54	0.69	0.71	0.83
v	7	3	4	1	8	6	2	5

Fig. 2. Procedimento de aplicação do decodificador

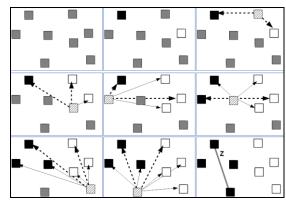


Fig. 3. Etapa de Alocação dos (n-k) objetos aos grupos

D. Algoritmo GRASP para o PADM

No que concerne ao GRASP proposto para o PADM, o procedimento de construção foi desenvolvido para operar em duas etapas, quais sejam: (1) são selecionados k objetos dentre os n objetos da base de dados (conjunto X), sendo cada um desses objetos alocados a um grupo G_h (h=1,...,k). Doravante, denotaremos cada um desses objetos como centroide do grupo. A ideia é alocar os k objetos mais afastados, entre si, a grupos distintos. (2) Alocar os (n-k) objetos restantes aos k grupos a partir da definição de uma lista restrita de candidatos.

Para efetuar a alocação dos k objetos, definindo-se os centroides dos grupos, toma-se, inicialmente por base, um vetor $d=(d_1,...,d_i,...,d_n)$, onde cada componente d_i de d contém a maior distância do i-ésimo objeto x_i em relação aos demais (n-1) objetos de X. Em seguida, cria-se um vetor b que contém os elementos do vetor d ordenados decrescentemente. Finalmente, os valores de b são pesquisados em d, retornando-se, em um vetor a, as posições que tais valores ocupam em b. O vetor a, por sua vez, será utilizado como dado de entrada pelo procedimento de construção em todas t iterações do algoritmo GRASPMD. Por exemplo, supondo n=8 e que os vetores d e b produzam o vetor a=(2,5,1,7,4,3,8,6), temos que b=(2,5,1,7,4,3,8,6), temos que b=(2,5,

Considerando os valores nas n' primeiras posições de a (n'=0.7n), define-se o vetor $s=(a_1,a_2,...,a_n)$. Em cada iteração, o procedimento de construção seleciona k elementos do vetor s, sendo cada um desses elementos associados a um

grupo $G_h(h=1,...,k)$.

O algoritmo 2 tem os passos associados à primeira etapa de aplicação do procedimento de construção, considerando o vetor s e a matriz D (com distâncias d_{ij} entre todos os objetos x_i e $x_i \in X$).

Algoritmo 2 – GRASP – 1ª Etapa de Construção(D,s,n')

```
1: G/1/\leftarrowselecione(s,1)
2: s \leftarrow s \backslash G/1/
3: n' \leftarrow n'-1; h \leftarrow 1
4: Enquanto (h<k) Faça
5: M←0
      Para i←l Até n' Faça
7:
        Para j \leftarrow 1 Até h Faça
 8:
           Se (d[s[i]][G[j]] > M) Então
 9:
               w \leftarrow i:
10:
               M \leftarrow d[s[i]][G[j]]
11:
12:
        Fim-Para
13: Fim-Para
14: h \leftarrow h+1
15: G[h] \leftarrow s[w]; n' \leftarrow n'-1; s \leftarrow s \setminus G[h]
16: Fim-Enquanto
17: Retorna(G)
```

Na linha 1 deste algoritmo, é selecionado de s, aleatoriamente, o objeto (1º centroide) que definirá o primeiro grupo (G_I) e, nas linhas 2 e 3, ocorre a atualização do vetor s e do seu número de elementos, excluindo o objeto selecionado na linha 1. Entre as linhas 5 e 15, ocorre a seleção de k-I objetos de s que serão os centroides dos grupos G_2 , G_3 ,..., G_k . Assim sendo, na primeira iteração, considerando as linhas 6 até 13, o próximo objeto a ser escolhido de s, e que será utilizado para definir o grupo 2, é aquele que está mais distante do centroide do grupo G_I . Após a execução dessas linhas, temos a atualização (linha 14) do número de grupos e a definição do grupo G_2 (linha 15). Generalizando, na h-ésima iteração, considerando as linhas 5 a 15, define-se o objeto de s que será alocado ao h-ésimo grupo, considerando a condição explicitada na linha 8.

Definidos os k centroides dos grupos, os n-k objetos restantes em X são alocados aos grupos $G_1,...,G_k$, utilizando o algoritmo 3. Na linha 1 do algoritmo 3, a lista de candidatos (LC) é definida, inicialmente, com todos os objetos de X, excluindo-se os k objetos utilizados como centroides dos grupos G_h (h=1,...,k). Em cada iteração desse algoritmo (linhas 4 a 22) um objeto da LC é alocado ao grupo G_h que esteja mais próximo (menor distância). Mais especificamente, entre as linhas 6 e 15, determina-se a distância máxima de cada objeto $x \in LC$ a cada um dos grupos G_h , ou seja, dentre os objetos já alocados a cada um dos grupos, verifica-se qual objeto está mais afastado de x.

Assim sendo, após a execução das linhas 9-11, o vetor dmax tem a maior distância de x a cada um dos grupos G_h . Na linha 13, associa-se a g[t] o menor valor de dmax, que corresponde ao menor incremento que pode ser observado ao alocar x ao grupo G_h . Na linha 14, H[x] armazena o número do grupo ao qual x deve ser alocado. Uma vez realizados os passos entre 6 e 15, no passo 16 determina-se o menor e o

maior acréscimos associados à alocação de objetos da LC na solução em construção. No passo 17, define-se a LRC a partir de um subconjunto de objetos da LC e, no passo 18, é selecionado um objeto da LRC para ser alocado a um dos grupos, atualizando-se o diâmetro do grupo e a lista de candidatos LC (passos 19-21). Após a aplicação do algoritmo 3, produz-se uma solução com os grupos (alocação dos n objetos de X) e o diâmetro máximo.

Algoritmo $3 - GRASP - 2^a$ Etapa de Construção (G,X,n)

```
1: LC \leftarrow X \setminus \{ \cup G_h \}
  2: i \leftarrow 0
  3: Z[h] \leftarrow \infty (h=1,...k)
  4: Enquanto (i<n-k) Faça
  5:
             i \leftarrow i+1
  6:
             Para t←1 Até (n-k-i+1) Faça
  7:
                     max \leftarrow -\infty
  8:
                     x \leftarrow LC[t]
  9.
                     Para h \leftarrow 1 Até k Faça
                         \operatorname{dmax}[h] \leftarrow \operatorname{maximo} \forall_{y \in \mathit{Gh}} (\operatorname{d}[x][y])
10:
 11:
 12:
                     h^* \leftarrow argmin_h (dmax[h]).
13:
                     g[x] \leftarrow dmax[h^*]
14:
                     H[x] \leftarrow h^*
15:
             Fim-Para
16:
             g_{min} \leftarrow minimo(g); g_{max} \leftarrow maximo(g)
17:
             LRC \leftarrow \{t \in LC | g[t] \leq g_{min} + 0.2(g_{max} - g_{min})\}
18:
             x \leftarrow selecione(LRC, 1)
19:
             Se (g[x]>Z[H[x]]) Então Z[H[x]] \leftarrow g[x]
20:
             G[H[x]] \leftarrow G[H[x]] \cup x
21:
             LC \leftarrow LC - x
22: Fim-Enquanto
23: Retorna(G)
```

Algoritmo 4 - GRASP - Busca Local(G,Z)

```
1: reducao← VERDADEIRO
 2: Enquanto (redução= VERDADEIRO) Faça
      reducao←FALSO
      w \leftarrow argmax _{h=1,...,k} (Z[h])
 4:
      Z_{MAX} \leftarrow Z[w]
     Atribua a y_i e y_j, respectivamente os pontos x_i, x_j \in G[w]
      associados ao diâmetro Z_{MAX} de G[w]
 7:
      Para h \in \{1,...,k\} \setminus \mathbf{Faça}
 8:
       Se (alocação de y_i ou y_j a G[h] produz Z[h] \le Z_{MAX}) Então
 9:
           Z_{MAX} \leftarrow Z[h]; h* \leftarrow h
10:
          x_k \leftarrow (y_i \ ou \ y_i) que produz maior decréscimo em Z[h^*]
11:
          reducao←VERDADEIRO
12:
       Fim-se
13:
      Fim-Para
      Se (reducao=VERDADEIRO) Então
15:
        Alocar x_k a G[h^*] e atualizar o grupo G[w]
16:
        Atualizar o vetor Z
17: Fim-se
18: Fim-Enquanto
```

Com o objetivo de reduzir o diâmetro máximo, foi aplicada a busca local apresentada no algoritmo 4. Em linhas gerais, este algoritmo determina, em cada iteração, o grupo atual com maior diâmetro e verifica se a alocação de um dos dois objetos x_i e x_j desse grupo (que determinam esse diâmetro maior d_{ij}) a um dos k-l grupos restantes produz um novo conjunto de grupos G_h (h=l,...,k), tal que o maior diâmetro dentre os diâmetros dos k grupos seja inferior ao maior diâmetro atual. Enquanto ocorrer (linha 2) redução no

diâmetro, novas iterações são realizadas, identificando-se o grupo com maior diâmetro e avaliando-se a alocação dos objetos associados a este grupo a outros grupos. Nas linhas 4, 5 e 6, determina-se o número do grupo G_w atual com maior diâmetro e os dois objetos que determinam este diâmetro. Entre as linhas 7-13, é avaliado se a alocação de um desses objetos a outros grupos produz redução no diâmetro máximo. A alocação que produz a maior redução no diâmetro é considerada nos passos 14-17, e efetua-se a atualização dos grupos que tiveram realocação de objetos, mais especificamente, os grupos G_w e G_{h^*}

IV. RESULTADOS COMPUTACIONAIS

A presente seção traz resultados relativos à aplicação dos algoritmos BRKGADM e GRASPDM1, descritos na seção III, da formulação da seção II e dos algoritmos CL e FPF. Em relação ao algoritmo GRASPDM2 (correspondente ao algoritmo GRASP-II proposto em [11]), os seus autores não disponibilizaram a sua versão implementada. Assim sendo, conforme explicado mais à frente, foi considerado um experimento específico, onde os resultados obtidos para um conjunto de instâncias utilizadas em [11] foram comparados com os resultados produzidos pelos algoritmos BRKGADM, GRASPDM1, CL e FPF. Os algoritmos BRKGADM, GRASPDM1 e FPF foram implementados em linguagem R (www.r-project.org), o algoritmo CL está disponível em R, no pacote cluster (função hclust) e a formulação foi implementada pelos autores utilizando a versão 14.0 do solver de otimização LINGO (https://www.lindo.com).

Todos os experimentos relacionados aos algoritmos e à formulação foram realizados em um computador com 24GB de memória RAM e dotado de processador de 3.40 GHz (*I7*).

De forma a avaliar os algoritmos BRKGADM e GRASPDM1 frente aos três algoritmos da literatura e à formulação, no que diz respeito à qualidade das soluções produzidas, foram considerados dois experimentos, a saber: (Experimento - I) os algoritmos BRKGADM, GRASPDM1, FPF, CL e a formulação foram aplicados nas 29 instâncias listadas na Tabela I. Esta tabela traz o nome da instância, seu número de objetos (n) e a origem (O). Quanto à origem, essas instâncias são distribuídas em 8 grupos, a saber: (1) literatura, sendo citadas e utilizadas, por exemplo, em [4] e [6]; (2) site do IBGE (www.ibge.gov.br) e da universidade da Califórnia (archive.ics.uci.edu/ml/); (3) gerada artificialmente software R; (4) disponível no pacote MASS no R; (5) utilizadas em [23]; (6) e (7) disponíveis, respectivamente, nos pacotes cluster.dataset e dataset do R e (8) disponível em https://cs.joensuu.fi/sipu/datasets/;

(Experimento - II) os algoritmos BRKGADM, GRASPDM1, FPF e CL foram aplicados em 21 instâncias listadas na tabela II. Esta tabela traz o nome da instância (formato xxx_y, sendo xxx correspondente ao número de objetos, variando entre 300 e 1.000, e y correspondente ao número de grupos (k) que foi considerado ao aplicar o algoritmo GRASPDM2 nessas instâncias). Estas 21 instâncias, gentilmente cedidas pelos autores de [11], foram geradas artificialmente de acordo com

procedimento descrito em [11]. Os resultados produzidos pelos algoritmos BRKGADM, GRASPDM1, FPF e CL, para estas instâncias, foram comparados com os resultados produzidos pelo algoritmo GRASPDM2, apresentados na tabela 1 (table 1, pg 518), disponível em [11]. Em todas as instâncias das Tabelas I e II, foi considerada a distância euclidiana para a construção da matriz de distâncias D (vide seção II), que é utilizada no cálculo da função objetivo do problema.

TABELA I INSTÂNCIAS UTILIZADAS – EXPERIMENTO I

INSTANCIAS OTILIZADAS EXTERNICIOT							
Instância	n	О	Instância	n	О		
200DATA (2)*	200	1	idh2013 (1)	187	2		
2face (2)	200	1	indochina combat (4)	72	6		
Aggregation (2)	788	8	iris (4)	150	1		
Airqualit (2)	153	7	maronna (2)	200	1		
BreastB (1213)	49	5	moreshapes (2)	489	1		
broken-ring (2)	800	1	normal300 (2)	300	3		
Chart (60)	600	1	numbers2 (2)	540	1		
concrete_data (9)	1.030	2	Parkinsons (23)	195	2		
cpu (8)	209	4	pib100 (1)	100	2		
DBLCA (661)	141	5	ruspini (2)	75	1		
face (2)	296	1	vowel2 (2)	528	1		
Faithful (2)	272	7	wholesale (6)	440	2		
Forestfires (7)	517	2	wine (13)	178	1		
gauss9 (2)	900	1	yeast (7)	1.484	1		
Haberman (4)	306	2					

*Valores entre parênteses após nome da instância indicam o número de atributos

TABELA II INSTÂNCIAS UTILIZADAS – EXPERIMENTO II

			Instância	S		
400 3	500 3	600 3	700 3	800 3	900 3	1000 3
400 4	500 4	600 4	700 4	800 4	900 4	1000 4
400_5	500_5	600_5	700_5	800_5	900_5	1000_5

Em relação ao experimento I, os resultados do BRKGADM e GRASPDM1 foram comparados com os da formulação (teve tempo máximo de execução de 2 horas) e com os dos algoritmos CL e FPF, considerando as 29 instâncias e k=2,3,4,5. Ou seja, foram produzidas 116 soluções (n^o de instâncias x n^o de grupos). No experimento II, adotou-se, para cada uma das 21 instâncias, o mesmo valor de k apresentado na Tabela II.

Os parâmetros utilizados do BRKGADM e GRASPDM1 foram definidos a partir de experimentos preliminares em um subconjunto de 5 instâncias (dentre as 29), sendo testadas várias combinações dos seus parâmetros. Assim sendo, os valores finais utilizados no algoritmo BRKGADM foram: p=100 (tamanho da população); $p_m=20$; $p_e=25$ (número de cromossomos mutantes e elite); $\rho_e=0.7$ (probabilidade de cruzamento) e m=50 (número de gerações). De igual forma, após a realização de experimentos preliminares em relação ao GRASPDM1, o número de iterações t (aplicação da construção e busca local) foi definido igual a 75 e o valor de $\alpha=0.2$.

Para fins de análise e construção dos gráficos e tabelas a seguir, foi considerada como solução "vencedora" a melhor solução produzida (ótimo local ou global) por, pelos menos, um dos algoritmos ou pela formulação.

Uma análise da Fig. 4 mostra que o BRKGADM teve uma performance superior em relação aos demais algoritmos e à formulação, seguido pelo algoritmo GRASPDM1. Mais

especificamente, os percentuais de soluções vencedoras do BRKGADM para k=2, 3, 4 e 5 foram, respectivamente, de: 100%, 97%, 97% e 83%. No caso do GRASPDM1, estes percentuais foram de: 100%, 86%, 72% e 45%.

A tabela III traz os *gaps* médios (%) para cada um dos algoritmos e número de grupos, tomando por base as 29 instâncias e a expressão: $(z_{ij} - zv_j)/zv_j$, sendo zv_j o valor do menor diâmetro (função objetivo) associado à solução vencedora em relação à *j*-ésima instância e z_{ij} o valor do menor diâmetro (fobj) produzido pelo *i*-ésimo algoritmo (ou formulação) para *j*-ésima instância. A partir desta tabela, observa-se que BRKGADM teve *gaps* médios bem pequenos, inferiores a 0,5%, independentemente do número de grupos.

TABELA III EXPERIMENTO I – GAPS MÉDIOS EM RELAÇÃO À SOLUÇÃO VENCEDORA

	k=2	k=3	k=4	k=5
Formulação	0,00%	7,9%	27,0%	39,7%
BRKGADM	0,00%	0,4%	0,0%	0,2%
GRASPDM1	0,00%	1,6%	1,8%	8,8%
FPF	2,5%	9,1%	15,0%	32,0%
CL	6,9%	14,0%	25,4%	35,7%

Concluindo a análise dos resultados do Experimento I, a tabela IV traz o percentual de soluções ótimas globais produzidas dentro do intervalo de 2 horas pela formulação e dois melhores algoritmos (BRKGADM GRASPMDM1). Em particular, o BRKGADM produziu o mesmo percentual de ótimos globais que a formulação, a menos do número de grupos igual a 4. O tempo de processamento do BRKGADM variou entre 2 segundos (menor instância) e 1,1 minutos (maior instância). No caso do algoritmo GRASPDM1, os tempos variaram entre 3 segundos e 5 minutos. A Tabela V traz, para as instâncias reportadas na Tabela II, os percentuais de soluções vencedoras e os gaps médios, obtidos com a aplicação dos algoritmos BRKGADM, GRASPDM1, GRASPDM2, FPF e CL. Novamente, pode-se observar que o BRKGADM teve performance superior aos demais algoritmos quanto ao total de soluções vencedoras e gaps médios. Destaca-se, também, uma vantagem do algoritmo GRASPDM1 em relação ao GRASPM2, tanto em relação ao percentual de soluções vencedoras quanto ao gap médio.

De forma a avaliar a robustez das soluções produzidas pelo algoritmo BRKGADM, o algoritmo com melhores soluções, realizou-se um experimento com 7 instâncias dos experimentos I (k=3,4,5) e II. O BRKGADM foi aplicado 100 vezes nestas instâncias e, a partir das 100 soluções (valores de Z) produzidas, foram calculadas as estatísticas resumo apresentadas na tabela VI. Nesta tabela, a partir da coluna três, temos os valores: mínimo (min), médio (med) e máximo (max) em relação a Z, além do coeficiente de variação das soluções.

 $TABELA\ IV$ experimento I — Percentuais de ótimos globais

	k=2	k=3	k=4	k=5
Formulação	89,7%	62,1%	37,9%	13,8%
BRKGADM	89,7%	62,1%	34,5%	13,8%
GRASPDM1	89,7%	48,3%	31,0%	6,9%

TABELA V EXPERIMENTO II PERCENTUAIS DE SOLUÇÕES VENCEDORAS E GAPS MÉDIOS

Algoritmo	%Vencedoras	Gap
BRKGADM	90,5%	0,5%
GRASPDM1	81,0%	1,1%
GRASPDM2	66,7%	4,3%
FPF	0,0%	29,5%
CL	9,5%	20,0%

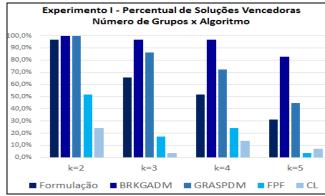


Fig. 4. Gráfico com os percentuais de soluções vencedoras.

TABELA VI ESTATÍSTICAS RESUMO DAS 100 EXECUÇÕES DO BRKGADM

Instância	k	min	med	max	cv%
DBLCA	3	51,968	51,968	51,968	0,00
DBLCA	4	49,035	49,035	49,035	0,00
DBLCA	5	47,848	47,848	47,848	0,00
maronna	3	3,058	3,058	3,058	0,00
maronna	4	1,988	1,988	1,988	0,00
maronna	5	1,859	1,859	1,859	0,00
moreshapes	3	2,435	2,435	2,435	0,00
moreshapes	4	2,282	2,283	2,312	0,14
moreshapes	5	1,555	1,555	1,555	0,00
Haberman	3	5,128	5,128	5,128	0,00
Haberman	4	4,427	4,448	4,554	0,71
Haberman	5	4,182	4,182	4,182	0,00
broken-ring	3	2,908	2,908	2,908	0,00
broken-ring	4	2,119	2,119	2,119	0,00
broken-ring	5	1,924	1,932	1,935	0,27
C3600 4		0,545	0,545	0,545	0,00
C3900 3		0,104	0,104	0,107	0,64

Em todos os casos, o valor mínimo obtido para Z (min) foi igual à solução produzida pelo algoritmo BRKGADM nos experimentos I e II. Além disso, em 13 dos 17 casos, o coeficiente de variação (cv) foi igual a zero e, nos demais casos, foi inferior a 1%. Isso significa que, na maioria das vezes, o algoritmo produz a mesma solução e que esta corresponde à melhor solução, uma vez que a solução média, na maioria dos casos, foi igual à solução mínima.

V. Conclusões

O presente artigo trouxe a proposta de dois algoritmos heurísticos para o PADM baseados nas metaheurísticas GRASP e BRKGA. Foram realizados experimentos computacionais com esses algoritmos e mais três algoritmos de literatura, além de uma formulação de programação inteira em dois conjuntos de instâncias de porte variado quanto ao número de objetos. Tendo como critérios de avaliação o número total de melhores soluções e o *gap* médio, o algoritmo BRKGADM foi o que teve a melhor performance frente aos demais algoritmos, seguido pelo GRASPDM. Estes

algoritmos produziram, também, soluções melhores que o algoritmo GRASP proposto em [11]. Além disso, no experimento adicional com o BRKGADM, para avaliar a robustez, observou-se que o algoritmo foi robusto e produziu soluções de boa qualidade. Em trabalhos futuros, pretende-se desenvolver novos decodificadores para o BRKGADM e novos procedimentos de construção e busca local para o GRASPDM1, bem como avaliar a aplicação desses algoritmos em mais instâncias.

REFERÊNCIAS

- [1] J.F, Hair, W.C, Babin, J.B, Anderson, R.E. and Black, W.C., *Multivariate Data Analysis*, 8th Edition, 2018.
- [2] M.R., Rao, "Cluster Analysis and Mathematical Programming," Journal of American Statistical Association, vol. 66, pp. 622-626, 1971.
- [3] P., Hansen and B., Jaumard, "Cluster Analysis and Mathematical Programming," Mathematical Programming, vol. 79, pp. 191-215, 1997
- [4] M.D. Cruz, "O Problema de Clusterização Automática," Tese de doutorado, Coppe/UFRJ, Rio Janeiro, Brasil, 2010.
- [5] J.A.M., Brito, G.S., Semaan e L.R., Brito, "Resolução do Problema dos k-medoids Via Algoritmo Genético de Chaves Aleatórias Viciadas," Revista Pesquisa Naval, vol. 27, pp.126-142, 2015.
- [6] G.S., Semaan, "Algoritmos para o Problema de Agrupamento Automático," Tese de doutorado, IC/UFF, RJ, Brasil, 2013.
- [7] G.S., Semaan, A.C., Fadel, J.A.M., Brito e L.S.Ochi, "A Hybrid Heuristic with Hopkins Statistic for the Automatic Clustering Problem," IEEE Latin America Transactions, vol. 17, no. 1, 2019.
- [8] Alexeis Joel Ochoa Reyes, A.J.O., Arturo Orellana Garcia, A.O., Mui, Y.L. System for Processing and Analysis of Information Using Clustering Technique. IEEE Latin America Transactions. VOL. 12, NO. 2, 2015.
- [9] C. D. Guerrero, D. Salcedo and, H. Lamos "A Clustering Approach to Reduce the Available Band width Estimation Error" IEEE LATIN AMERICA TRANSACTIONS, VOL. 11, NO. 3, 2013.
- [10] Thomas, J.C.R., Penãs, M.S., Cofre M.M, Carralero, N.D. "Performance Analysis of Clustering Internal Validation Indexes with Asymmetric Clusters" IEEE LATIN AMERICA TRANSACTIONS, VOL. 17, NO. 5, 2019.
- [11] J.A., Fiorucci, F.M.B., Toledo and M.C.V., Nascimento, "Heuristics for minimizing the maximum within-clusters distance", Pesquisa Operacional, vol.32, no. 3, pp: 497-522, 2012.
- [12] P. Hansen and M., Delattre, "Complete-link cluster analysis by graph coloring," Journal of the American Statistical Association, vol. 73, pp. 397-403, 1978.
- [13] M.J., Brusco and S. Stahl, "Branch and Bound applications in combinatorial data analysis," New York, Springer-Verlag, 2005.
- [14] Großwendt, A., Röglin, H. Improved Analysis of Complete-Linkage Clustering, Algorithmica, vol 78, pp. 1131–1150, 2017.
- [15] M. Brusco, D. Steinley. "Model selection for minimum diameter partitioning" British Journal of Mathematical and Statistical Psychology, vol. 67, pp. 471-495, 2014., pp. 471-495, 2014.
- [16] D. Aloise and Contardo, C. (2016). A New Global Optimization Algorithm for Diameter Minimization Clustering. Proceedings of Global Optimization Workshop (GOW16), Portugal.
- [17] M.G.C., Resende and C.C., Ribeiro, "Optimization by GRASP: Greedy Randomized Adaptive Search Procedures," 2nd ed., Springer, 2016.
- [18] M.G.C., Resende and C.C. Ribeiro. GRASP: Greedy Randomized Adaptive Search Procedure: Advances and extensions. Handbook of 3rd edition, M. Gendreau and J.-Y. Potvin, Eds., Springer, pp. 169-220, 2019.
- [19] J.R., Gonçalves and M.G.C., Resende, "Biased random-key genetic algorithms for combinatorial optimization," Journal of Heuristics, vol. 17, pp. 487-525, 2011.
- [20] Gonzalez, "Clustering to minimize the maximum intercluster distance," Theoretical Computer Science, vol. 38, pp. 293-306, 1985.
- [21] M.G.C., Resende, "Introdução aos Algoritmos Genéticos de Chaves Aleatórias Viciadas," Anais do XLVSPPO, pp. 3680-3691, 2013.
- [22] W.M., Spears and K.A., Dejong, "On the virtues of parameterized uniform crossover," in Proceedings of Fourth International Conference on Genetic Algorithms, pp. 230-236, 1991.

[23] M.C.V., Nascimento, F.M.B., Toledo e A.C.P.L.F, de Carvalho,"Investigation of a new GRASP- based clustering algorithm applied to biological data," Computers & Operations Research, vol. 37, pp:1381-1388, 2010.

José André de Moura Brito tem bacharelado em Matemática pela UFRJ (1997), Mestrado e Doutorado em Otimização pela COPPE/UFRJ (1999 e 2004) e Pós-Doutorado em Otimização na UFF (2008). É professor da Escola Nacional de Ciências Estatísticas (ENCE/IBGE).

Augusto Cesar Fadel é bacharel em Estatística pela Escola Nacional de Ciências Estatísticas (ENCE) e tem mestrado em Ciência da Computação na UFF. Atua como estatístico no Instituto Brasileiro de Geografia e Estatística (IBGE), onde desenvolve atividades relacionadas a controle estatístico de sigilo e uso de big data.

Gustavo Silva Semaan é Professor da Universidade Federal Fluminense (UFF). Doutor e Mestre pelo Instituto de Computação da UFF. Bacharel em Sistemas de Informação pela Faculdade Metodista Granbery.

Flávio Marcelo Tavares Montenegro é Professor da Escola Nacional de Ciências Estatísticas (ENCE). Tem mestrado em Física pelo Centro Brasileiro de Pesquisas Físicas (1997) e doutorado em Engenharia de Sistemas e Computação pela COPPE/UFRJ (2001).